K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 10 2021

Lời giải:
$x^3+y^3+z^3=x+y+z+2020$

$\Leftrightarrow x(x^2-1)+y(y^2-1)+z(z^2-1)=2020$

$\Leftrightarrow x(x-1)(x+1)+y(y-1)(y+1)+z(z-1)(z+1)=2020$
Vì $x,x-1,x+1$ là 3 số nguyên liên tiếp nên $x(x-1)(x+1)\vdots 6$

Tương tự: $y(y-1)(y+1), z(z-1)(z+1)\vdots 6$

$\Rightarrow x(x-1)(x+1)+y(y-1)(y+1)+z(z-1)(z+1)\vdots 6$

Mà $2020\not\vdots 6$ nên không tồn tại 3 số nguyên $x,y,z$ thỏa mãn đk đã cho.

24 tháng 11 2016

mình nghĩ là làm như vầy, bạn xem thử nha

ta thay p(1)=23 và p(23)=84 lần lượt vào p(x)=ax+b

ta sẽ có: p(1)=1a+b=23

p(23)=23a+b=84

=> -22a =-61 (BẠN GIẢI HỆ PT NHÉ)

=> a=61/22

vì theo đề cho hệ số P(x) nguyên mà a=61/22( không nguyên)

=> không tồn tại một đa thức với hệ số nguyên P(x) thỏa mãn P(1)=23 và P(23)=84

2 tháng 1 2016

Sao các tich bằng nhau vậy, vô lý!

23 tháng 11 2016

Câu hỏi của Ngân Hoàng Xuân - Toán lớp 8 | Học trực tuyến

23 tháng 11 2016

http://h.vn/hoi-dap/question/63462.html