K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔABD=ΔHBD

10 tháng 5 2022

a) Xét tam giác ABC ta có : 62 + 82 = 102 ( vì 36 + 64 = 100 )

=> BC2 = AB2 + AC2

=> Tam giác ABC là tam giác vuông

b. Xét tam giác ABD và tam giác HBD ta có :

BD chung

Góc ABD = góc HBD ( gt)

Góc BAD = góc BHD ( = 90 độ )

=> Tam giác ABD = Tam giác HBD ( ch - gn)

 

a) Xét ΔABC có AB=BC>AC(6cm=6cm>4cm)

mà góc đối diện với cạnh AB là góc ACB

và góc đối diện với cạnh BC là góc BAC

và góc đối diện với cạnh AC là góc ABC

nên \(\widehat{ACB}=\widehat{BAC}>\widehat{ABC}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)

b) Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:

\(AC^2=AB^2+BC^2\)

\(\Leftrightarrow BC^2=AC^2-AB^2=10^2-6^2=64\)

hay BC=8(cm)

Xét ΔABC có AB<BC<AC(6cm<8cm<10cm)

mà góc đối diện với cạnh AB là góc ACB

và góc đối diện với cạnh BC là góc BAC

và góc đối diện với cạnh AC là góc ABC

nên \(\widehat{ACB}< \widehat{BAC}< \widehat{ABC}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)

2 tháng 12 2021

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

2 tháng 12 2021

Anh ơi

20 tháng 11 2016

a/ Ta có: \(\widehat{B}\)=\(\widehat{F}\); AB = EF

Để tam giác ABC = tam giác DEF theo trường hợp cạnh góc cạnh, ta cần bổ sung điều kiện BC = FD

Khi đó. tam giác ABC = tam giác EFD (c.g.c)

b/ Ta có: tam giác ABC = tam giác EFD

=> AB = EF; BC = FD; AC = DE

Chu vi tam giác ABC = tam giác EFD

AB + BC + AC = EF + FD + DE = 5 + 6 + 6

= 17 (cm)

Vậy chu vi tam giác ABC=chu vi tam giác EFD = 17 cm

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\)

=>1/2*6*AC=24

=>AC*3=24

=>AC=8cm

=>BC=10cm

AH=6*8/10=4,8cm

H=8^2/10=6,4cm

S AHC=1/2*4,8*6,4=15,36cm2

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)

hay AC=8(cm)

Vậy: AC=8cm

b) Xét ΔABE vuông tại A và ΔHBE vuông tại H có 

BE chung

\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABE=ΔHBE(cạnh huyền-góc nhọn)

6 tháng 12 2021

=24(cm)

19 tháng 12 2021
  

Xét ΔABC=ΔDEFcó:

AB=DE=5cm

BC=EF=7cm

DF=AC=6cm

- Chu vi của tam giác ABC là:

AB+BC+AC=5+7+6=18(cm)

- Chu vi của tam giác DEF là:

DE+EF+DE=5+7+6=18(cm)

Vậy +)Chu vi của tam giác ABC là 18 cm

+) Chu vi của tam giác DEF là 18 cm

9 tháng 5 2021

 

AC=AB.AB+BC.BC

     =6.6+10.10

     =36+100

     =136

     =11.6

 Chu vi  tam giác= AB=AC=BC=6+10+11=27

(Ko biết có làm đúng ko)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)

hay AC=8(cm)

Vậy: AC=8cm

Chu vi của tam giác ABC là:

C=AB+AC+BC=6+8+10=24(cm)