K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2016

a) \(3-\sqrt{x}=\)0

\(\sqrt{x}=0+3\)

\(\sqrt{x}=3\)

mà :\(\sqrt{9}=3\)

=> x = 9

26 tháng 10 2016

Thank you very much!

24 tháng 6 2016

a/ đề \(=\frac{\sqrt{x}}{\sqrt{x}-5}-\frac{10\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}-\frac{5}{\sqrt{x}+5}\)

       \(=\frac{\sqrt{x}\left(\sqrt{x}+5\right)-10\sqrt{x}-5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)

       \(=\frac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\frac{x-10\sqrt{x}+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)

          \(=\frac{\left(\sqrt{x}-5\right)^2}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\frac{\sqrt{x}-5}{\sqrt{x}+5}\)

b/ đề \(=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

            \(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-\left(6\sqrt{x}-4\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

            \(=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

              \(=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

c/ đề \(=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}-\frac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

          \(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-\left(3-11\sqrt{x}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

             \(=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

               \(=\frac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}}{\sqrt{x}-3}\)

24 tháng 6 2016

Rút gọn nhé

29 tháng 10 2020

Trả lời nhanh giúp mình với mình cần gấp lắm

Bài 1: Tính

a) Ta có: \(\frac{\sqrt{6+\sqrt{11}}-\sqrt{7-\sqrt{33}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{\sqrt{12+2\sqrt{11}}-\sqrt{14-2\sqrt{33}}}{\sqrt{12}+2}\)

\(=\frac{\sqrt{11+2\cdot\sqrt{11}\cdot1+1}-\sqrt{11-2\cdot\sqrt{11}\cdot\sqrt{3}+3}}{2\sqrt{3}+2}\)

\(=\frac{\sqrt{\left(\sqrt{11}+1\right)^2}-\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}}{2\sqrt{3}+2}\)

\(=\frac{\left|\sqrt{11}+1\right|-\left|\sqrt{11}-\sqrt{3}\right|}{2\left(\sqrt{3}+1\right)}\)

\(=\frac{\sqrt{11}+1-\left(\sqrt{11}-\sqrt{3}\right)}{2\left(1+\sqrt{3}\right)}\)(Vì \(\left\{{}\begin{matrix}\sqrt{11}>1>0\\\sqrt{11}>\sqrt{3}\end{matrix}\right.\))

\(=\frac{\sqrt{11}+1-\sqrt{11}+\sqrt{3}}{2\left(1+\sqrt{3}\right)}\)

\(=\frac{1+\sqrt{3}}{2\left(1+\sqrt{3}\right)}=\frac{1}{2}\)

b) Ta có: \(\frac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}+\frac{2}{4+\sqrt{15}}-\frac{5\sqrt{5}+3\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)

\(=\frac{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}+\frac{2}{4+\sqrt{15}}-\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(8-\sqrt{15}\right)}{\sqrt{5}+\sqrt{3}}\)

\(=\sqrt{15}+\frac{2}{4+\sqrt{15}}-\left(8-\sqrt{15}\right)\)

\(=\sqrt{15}+\frac{2}{4+\sqrt{15}}-8+\sqrt{15}\)

\(=2\sqrt{15}-8+\frac{2}{4+\sqrt{15}}\)

\(=\frac{2\sqrt{15}\left(4+\sqrt{15}\right)}{4+\sqrt{15}}-\frac{8\left(4+\sqrt{15}\right)}{4+\sqrt{15}}+\frac{2}{4+\sqrt{15}}\)

\(=\frac{8\sqrt{15}+30-32-8\sqrt{15}+2}{4+\sqrt{15}}\)

\(=\frac{0}{4+\sqrt{15}}=0\)

Bài 2: Rút gọn

Ta có: \(B=\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\left(\frac{1+\sqrt{a}}{a-1}\right)^2\)

\(=\left(\frac{\left(1+\sqrt{a}\right)\left(1-\sqrt{a}+a\right)}{1+\sqrt{a}}-\sqrt{a}\right)\cdot\left(\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)^2\)

\(=\left(1-\sqrt{a}+a-\sqrt{a}\right)\cdot\left(\frac{1}{\sqrt{a}-1}\right)^2\)

\(=\left(a-2\sqrt{a}+1\right)\cdot\frac{1}{\left(\sqrt{a}-1\right)^2}\)

\(=\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)^2}=1\)

Bài 3:

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\notin\left\{9;4\right\}\end{matrix}\right.\)

b) Ta có: \(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{3-3\sqrt{x}}{x-5\sqrt{x}+6}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{3-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x-4-\left(x-2\sqrt{x}-3\right)+3-3\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{x-3\sqrt{x}-1-x+2\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{1}{3-\sqrt{x}}\)

c) Để A<-1 thì A+1<0

\(\Leftrightarrow\frac{1}{3-\sqrt{x}}+1< 0\)

\(\Leftrightarrow\frac{-1}{\sqrt{x}-3}+\frac{\sqrt{x}-3}{\sqrt{x}-3}< 0\)

\(\Leftrightarrow\frac{-1+\sqrt{x}-3}{\sqrt{x}-3}< 0\)

\(\Leftrightarrow\frac{\sqrt{x}-4}{\sqrt{x}-3}< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}-4>0\\\sqrt{x}-3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}-4< 0\\\sqrt{x}-3>0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}>4\\\sqrt{x}< 3\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}< 4\\\sqrt{x}>3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< 16\\x>9\end{matrix}\right.\Leftrightarrow9< x< 16\)

15 tháng 6 2017

Bài rút gọn 

\(\sqrt{\left(x-1\right)^2}-x=\left|x-1\right|-x\)

\(=\left(x-1\right)-x=x-1-x=-1\left(x>1\right)\)

Bài gpt:

\(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}=0\)

Đk:\(-1\le x\le3\)

\(pt\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{\left(x-1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}+\sqrt{x-3}\right)=0\)

Dễ thấy:\(\sqrt{x-2}+\sqrt{x-3}=0\) vô nghiệm

Nên \(\sqrt{x-1}=0\Rightarrow x-1=0\Rightarrow x=1\)

31 tháng 3 2016

Câu 1 : 

Đk: \(x\ge1\) 

\(\sqrt{x-1}+\sqrt{2x-1}=5\\ \Leftrightarrow x-1+2\sqrt{\left(x-1\right)\left(2x-1\right)}+2x-1=25\\ \Leftrightarrow2\sqrt{2x^2-3x+1}=27-3x\\ \)

\(\Leftrightarrow\begin{cases}27-3x\ge0\\4\left(2x^2-3x+1\right)=9x^2-162x+729\end{cases}\) \(\Leftrightarrow\begin{cases}x\le9\\x^2-150x+725=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x\le9\\x=145hoặcx=5\end{cases}\)

với x= 5 thoản mãn điều kiện, x=145 loại

Vậy \(S=\left\{5\right\}\)

20 tháng 7 2016

từ dòng cuối là sai rồi bạn à

Bạn bỏ dòng cuối đi còn lại đúng rồi

Ở tử đặt nhân tử chung căn x chung  rồi lại đặt căn x +1 chung

Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra 

rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

 

21 tháng 7 2016

cảm ơn bạn nha ok