Chứng mjnh rằng mọi số nguyên x,y thì : A=(x+y)(x+2y)(x+3y)(x+4y)+y4 là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left[\left(x+y\right)\left(x+4y\right)\right]\left[\left(x+2y\right)\left(x+3y\right)\right]+y^4\\ A=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\\ A=\left(x^2+5xy+5y^2-y^2\right)\left(x^2+5xy+5y^2+y^2\right)+y^4\\ A=\left(x^2+5xy+5y^2\right)^2-y^4+y^4=\left(x^2+5xy+5y^2\right)^2\left(Đpcm\right)\)
Ta có \(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)
\(=\left(x+y\right)\left(x+4y\right)\left(x+2y\right)\left(x+3y\right)+y^4\)
\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
\(=\left(x^2+5xy+5y^2-y^2\right)\left(x^2+5xy+5y^2+y^2\right)+y^4\)
\(=\left(x^2+5xy+5y^2\right)^2\) là số chính phương. \(\Rightarrowđpcm\)
A=(x+y)(x+2y)(x+3y)(x+4y)+y4
=[(x+y)(x+4y)] [(x+2y)(x+3y)]+y4
=(x2+5xy+4y2) (x2+5xy+6y2)+y4
Gọi x2+5xy+4y2=a
\(\Rightarrow\)a(a+2y2)+y4
=a2+2ay2+y4
=(y2)2+2ay2+a2
=(a+y2)2
=(x2+5xy+4y2+y2)2
=(x2+5xy+5y2)2 là SCP
Ta có:
\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)
\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
Đặt \(x^2+5xy+5y^2=t\left(t\in Z\right)\) thì:
\(A=\left(t-y^2\right)\left(t+y^2\right)+y^4\)
\(=t^2-y^4+y^4=t^2\)
\(=\left(x^2+5xy+5y^2\right)^2\)
Vì \(x,y,z\in Z\) nên:
\(x^2\in Z,5xy\in Z,5y^2\in Z\)
\(\Leftrightarrow x^2+5xy+5y^2\in Z\)
Vậy \(A\) là số chính phương (Đpcm)
A=(x+y)(x+2y)(x+3y)(x+4y)+y4
A=(x+y)(x+4y).(x+2y)(x+3y)+y4
A=(x2+5xy+4y2)(x2+5xy+6y2)+y4
A=(x2+5xy+ 5y2 - y2 )(x2+5xy+5y2+y2)+y4
A=(x2+5xy+5y2)2-y4+y4
A=(x2+5xy+5y2)2
Do x,y,Z nen x2+5xy+5y2 Z
A là số chính phương
a) Ta có: A= (x+y)(x+2y)(x+3y)(x+4y)+y4
= (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y2
Đặt x2 + 5xy + 5y2 = h ( h thuộc Z):
A = ( h - y2)( h + y2) + y2 = h2 – y2 + y2 = h2 = (x2 + 5xy + 5y2)2
Vì x, y, z thuộc Z nên x2 thuộc Z, 5xy thuộc Z, 5y2 thuộc Z . Suy ra x2 + 5xy + 5y2 thuộc Z
Vậy A là số chính phương.
ồ bài này khá dễ
Ta có
\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)
\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
Đặt \(x^2+5xy+5y^2=t\left(t\in Z\right)\)
\(\)\(A=\left(t-y^2\right)\left(t+y^2\right)+y^4=t^2-y^4+y^4\)
\(=t^2=\left(x^2+5xy+5y^2\right)^2\)
Vì \(x,y,z\in Z\) nên \(\hept{\begin{cases}x^2\in Z\\5xy\in Z\\5y^2\in Z\end{cases}\Rightarrow x^2+5xy+y^2\in Z}\)
Vậy A là số chính phương
\(A=\left[\left(x+y\right)\left(x+4y\right)\right]\left[\left(x+2y\right)\left(x+3y\right)\right]+y^4.\)
\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4.\)
\(=\left[\left(x^2+5xy+5y^2\right)-y^2\right]\left[\left(x^2+5xy+5y^2\right)+y^2\right]+y^4.\)
\(=\left(x^2+5xy+5y^2\right)^2-y^4+y^4\)
\(=\left(x^2+5xy+5y^2\right)^2\)
Đến đây ta có điều phải chứng minh rồi :>
ta có A = (x+y)(x+2y)(x+3y)(x+4y)+y4
=(x2+5xy+4y2 )(x2+5xy+6y2)+y4
đặt x2 +5xy+5y2 =t (t thuộc Z) thi
A= (t -y2 )(t+y2)+y4 =t2 -y4+y4 =t2=(x2 +5xy+5y2)2
tôi coi tôi tự trả lời mới là tôi đúng