cho N= 2..4.5.6.7.Chứng minh rằng n+2,n+3,n+4,n+5,n+6,n+7 là hợp số.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta thấy n , n+1 , n+2 là 3 số tự nhiên liên tiếp
->trong đó chắc chắn có 1 số chẵn hay có 1 số chia hết cho 2
->n.(n+1).(n+2) chia hết cho 2
lại có: trong 3 số tự nhiên liên tiếp phải có 1 số chia hết cho 3
->n.(n+1).(n+2) chia hết cho 3
tích đó chia hết cho 2 và 3 ->tích đó chia hết cho 2.3
->n(n+1)(n+2) chia hết cho 6
mình cũng không chắc nữa
Gọi: \(A=n^2+4\)và \(B=n^2+16\)
Ta có: \(A=n^2+4=n^2-1+5=\left(n-1\right)\left(n+1\right)+5\)(1)
và \(B=n^2+16=n^2-4+20=\left(n-2\right)\left(n+2\right)+20\)(2)
Vì A;B là số nguyên tố nên từ (1) và (2) suy ra: \(\left(n-1\right)\left(n+1\right)\)và \(\left(n-2\right)\left(n+2\right)\)không chia hết cho 5.
Mặt khác, tích của 5 số tự nhiên liên tiếp: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)phải chia hết cho 5.
Suy ra n chia hết cho 5. ĐPCM.
Ta có: \(a^2+b^2+c^2=m^2+n^2+p^2\)
\(\Rightarrow a^2+b^2+c^2+m^2+n^2+p^2=2\left(m^2+n^2+p^2\right)\)
Vì \(2\left(m^2+n^2+p^2\right)⋮2\)\(\Rightarrow a^2+b^2+c^2+m^2+n^2+p^2⋮2\)(1)
Vì tích hai số tự nhiên liên tiếp chia hết cho 2 nên:
\(a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+m\left(m-1\right)\)
\(+n\left(n-1\right)+p\left(p-1\right)\)là số chẵn
\(\Rightarrow\left(a^2+b^2+c^2+m^2+n^2+p^2\right)-\left(a+b+c+m+n+p\right)⋮2\)(2)
Từ (1) và (2) suy ra a + b + c + m + n + p chia hết cho 2
Mà a + b + c + m + n + p > 2 ( do a,b,c,m,n,p dương) nên a + b + c + m + n + p là hợp số (đpcm)