K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2016

Ta có thể xây dựng cách phân tích thừa số đơn giản như sau:  \(4018=2.2009\)

Từ đó, dễ dàng thành lập được một biểu thức số có dạng  \(P=20092009...200940184018...4018\)  luôn chia hết cho  \(2009\)  \(\text{(}\)  với  \(x\)  là số các số  \(2009,\)  \(y\) là số các số  \(4018\)  \(\text{)}\)

Khi đó, tổng các chữ số cần tìm của  \(P\)  là  \(\left(2+0+0+9\right).x+\left(4+0+1+8\right).y=11x+13y\)

Mặt khác, do  \(P\)  có tổng chữ số là  \(2010\)  hay nói cách khác   \(11x+13y=2010\)  \(\left(\alpha\right)\)

Ta phải cần tìm  \(x,y\in Z^+\)  để thỏa mãn điều kiện phương trình  \(\left(\alpha\right)\)  có nghiệm 

Thật vậy, nhận thấy  \(x=y=0\)  không là nghiệm của  phương trình  \(\left(\alpha\right)\)

Do đó, từ  \(\left(\alpha\right),\)suy ra  \(x=\frac{2010-13y}{11}=183-y-\frac{2y+3}{11}\)

Để  \(x\in N\)  thì  \(\frac{2y+3}{11}\in N\)  tức là  \(2y+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)

Với chú ý rằng  \(2y+3>3\)  (do  \(y>0\)  ), kết hợp với điều ở trên, ta suy ra được  \(2y+3=11\)

Hay  \(y=8\)  \(\left(\beta\right)\)

Từ  \(\left(\alpha\right),\) \(\left(\beta\right)\) dễ dàng tính được  \(x=178\) \(\left(\text{ t/m ĐK}\right)\)

Vậy, với  \(P=20092009...200940184018...4018\)    \(\text{(}\)  trong đó, có  \(178\) số  \(2009,\) \(8\) số  \(4018\)  \(\text{)}\)  thì thỏa mãn yêu cầu đề bài đã cho, nghĩa là  có ít nhất một số tự nhiên tồn tại chia hết cho  \(2009\)  với  tổng các chữ số là    \(2010\)

19 tháng 7 2016

CMR tồn tại 1 số tự nhiên chia hết cho 2009 có tổng các chữ số là 2010  2009

31 tháng 1 2017

Dễ thấy là trong các số từ 1 tới 899 có số mà tổng các chữ số của nó bằng s, với 1 ≤ s ≤ 26. Thật thế, vd. các số 1, ..., 9, 19, 29, 39, ..., 99, 199, 299, ..., 899 có tổng các chữ số lần lượt là 1, 2, ..., 26.
Gọi s(n) là tổng các chữ số của n.
Trong 1900 số tự nhiên liên tiếp k+1, ..., k+1900 có ít nhất 1 số chia hết cho 1000. Gọi số nhỏ nhất trong 1900 số đó mà chia hết cho 1000 là a*1000 ta có a*1000 + 899 ≤ k + 1900. Nếu s(a*1000) chia hết cho 27 ta có đpcm Giả sử s(a*1000) chia cho 27 dư r với 1≤ r ≤ 26, tức 1 ≤ 27 - r ≤ 26
Ta chọn số b mà 1 ≤ b ≤ 899 sao cho s(b) = 27 - r
=> s(a*1000 + b) = s(a*1000) + s(b) = (27n + r) + (27 - r) = 27(n + 1) chia hết cho 27 (đpcm)

12 tháng 9 2021

ghê đấy cũng biết hỏi bài cơ à