Cho các biểu thức:\(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2};B=\dfrac{x-3}{x+1}\) \(\left(0\le x,x\ne9\right)\) a, Rút gọn A
b, Với P = A.B ,tìm x để P = \(\dfrac{9}{2}\)
c, Tìm x để B < 1
d, Tìm số nguyên x để P là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(B=\dfrac{2x+3\sqrt{x}+9-x+3\sqrt{x}}{x-9}=\dfrac{x+9}{x-9}\)
b: \P=A:B
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}\cdot\dfrac{x-9}{x+9}=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{x+9}>=\dfrac{-1\cdot3}{9}=\dfrac{-1}{3}\)
Dấu = xảy ra khi x=0
a) \(C=\left(\dfrac{x}{x^2-x-6}-\dfrac{x-1}{3x^2-4x-15}\right):\dfrac{x^4-2x^2+1}{3x^2+11x+10}\cdot\left(x^2-2x+1\right)\) (ĐK: \(x\ne-\dfrac{5}{3};x\ne3;x\ne-2;x\ne1\))
\(C=\left[\dfrac{x}{\left(x-3\right)\left(x+2\right)}-\dfrac{x-1}{\left(x-3\right)\left(3x+5\right)}\right]:\dfrac{\left(x^2-1\right)^2}{\left(3x+5\right)\left(x+2\right)}\cdot\left(x-1\right)^2\)
\(C=\left[\dfrac{x\left(3x+5\right)}{\left(3x+5\right)\left(x+2\right)\left(x-3\right)}-\dfrac{\left(x-1\right)\left(x+2\right)}{\left(x-3\right)\left(3x+5\right)\left(x+2\right)}\right]\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x^2-1\right)^2\left(x-1\right)^2}\)
\(C=\dfrac{3x^2+5x-x^2-2x+x+2}{\left(3x+5\right)\left(x+2\right)\left(x-3\right)}\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x^2-1\right)^2\left(x-1\right)^2}\)
\(C=\dfrac{2x^2+4x+2}{\left(3x+5\right)\left(x+2\right)\left(x-3\right)}\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x+1\right)^2\left(x-1\right)^4}\)
\(C=\dfrac{2\left(x+1\right)^2}{\left(3x+5\right)\left(x-3\right)\left(x+2\right)}\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x+1\right)^2\left(x-1\right)^4}\)
\(C=\dfrac{2}{\left(x-1\right)^4\left(x-3\right)}\)
b) Thay x = 2003 ta có:
\(C=\dfrac{2}{\left(2003-1\right)^4\left(2003-3\right)}=\dfrac{2}{2002^4\cdot2000}=\dfrac{1}{2002^4\cdot1000}\)
c) \(C>0\) khi:
\(\dfrac{2}{\left(x-1\right)^4\left(x-3\right)}>0\) mà: \(\left\{{}\begin{matrix}2>0\\\left(x-1\right)^4>0\end{matrix}\right.\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\) (đpcm)
\(A=\dfrac{2x}{x+3}-\dfrac{x+1}{3-x}-\dfrac{3-11x}{x^2-9}\)
\(=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}-\dfrac{3-11x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x\left(x-3\right)+\left(x+1\right)\left(x+3\right)-3+11x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x^2-6x+x^2+4x+3-3+11x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3x^2+9x}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x}{x-3}\)
b) Ta đã rút gọn được \(A=\frac{3x}{x-3}\)
TH1: \(x-3>0\rightarrow x> 3\). Khi đó:
\( \frac{3x}{x-3}<2\)
\(\Leftrightarrow 3x< 2(x-3)\Leftrightarrow x< -6\) (vô lý)
TH2: \(x-3> 0\rightarrow x< 3\). Khi đó:
\(\frac{3x}{x-2}<2 \Leftrightarrow 3x> 2(x-3)\) (nhân với một số âm thì phải đổi dấu)
\(\Leftrightarrow x> -6\)
Vậy \(3> x> -6\) thì \(A< 2\)
a: Ta có: \(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\)
\(=\dfrac{2x^2-6x+x^2+4x+3-3+11x}{\left(x+3\right)\left(x-3\right)}\)
\(=\dfrac{3x^2+9x}{\left(x+3\right)\left(x-3\right)}\)
\(=\dfrac{3x}{x-3}\)
b: Ta có P=AB
nên \(P=\dfrac{3x}{x-3}\cdot\dfrac{x-3}{x+1}=\dfrac{3x}{x+1}\)
Để \(P=\dfrac{9}{2}\) thì 9x+9=6x
\(\Leftrightarrow3x=-9\)
hay x=-3(loại)
a) \(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\\ \Rightarrow A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}-\dfrac{3-11x}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow A=\dfrac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{3-11x}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow A=\dfrac{2x\left(x-3\right)+\left(x+1\right)\left(x+3\right)-3+11x}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow A=\dfrac{2x^2-6x+x^2+4x+3-3+11x}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow A=\dfrac{3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow A=\dfrac{3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow A=\dfrac{3x}{x-3}\)
ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
\(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}-\dfrac{3-11x}{x^2-9}\)
\(=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{11x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x\left(x-3\right)+\left(x+1\right)\left(x+3\right)+11x-3}{\left(x+3\right)\left(x-3\right)}\)
\(=\dfrac{2x^2-6x+x^2+4x+3+11x-3}{\left(x+3\right)\left(x-3\right)}\)
\(=\dfrac{3x^2+9x}{\left(x+3\right)\left(x-3\right)}=\dfrac{3x\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{3x}{x-3}\)
a: Thay x=121 vào A, ta được:
\(A=\dfrac{121+7}{\sqrt{121}}=\dfrac{128}{11}\)
b: \(B=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}-\dfrac{2x-\sqrt{x}-3}{x-9}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}-\dfrac{2x-\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)+\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)-2x+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-\sqrt{x}-3-2x+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
c: \(S=\dfrac{1}{B}+A=\dfrac{\sqrt{x}+3}{\sqrt{x}}+\dfrac{x+7}{\sqrt{x}}=\dfrac{x+\sqrt{x}+10}{\sqrt{x}}\)
Vì \(x+\sqrt{x}+10=\sqrt{x}\left(\sqrt{x}+1\right)+10>=10>0\forall x\) thỏa mãn ĐKXĐ
và \(\sqrt{x}>0\forall\)x thỏa mãn ĐKXĐ
nên S>0 với mọi x thỏa mãn ĐKXĐ
=>S=|S|
a)B = \(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{7x+3}{9-x^2}\left(ĐK:x\ne\pm3\right)\)
= \(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}-\dfrac{7x+3}{x^2-9}\)
= \(\dfrac{2x\left(x-3\right)+\left(x+1\right)\left(x+3\right)-7x-3}{\left(x+3\right)\left(x-3\right)}\)
= \(\dfrac{3x^2-9x}{\left(x+3\right)\left(x-3\right)}=\dfrac{3x}{x+3}\)
b) \(\left|2x+1\right|=7< =>\left[{}\begin{matrix}2x+1=7< =>x=3\left(L\right)\\2x+1=-7< =>x=-4\left(C\right)\end{matrix}\right.\)
Thay x = -4 vào B, ta có:
B = \(\dfrac{-4.3}{-4+3}=12\)
c) Để B = \(\dfrac{-3}{5}\)
<=> \(\dfrac{3x}{x+3}=\dfrac{-3}{5}< =>\dfrac{3x}{x+3}+\dfrac{3}{5}=0\)
<=> \(\dfrac{15x+3x+9}{5\left(x+3\right)}=0< =>x=\dfrac{-1}{2}\left(TM\right)\)
d) Để B nguyên <=> \(\dfrac{3x}{x+3}\) nguyên
<=> \(3-\dfrac{9}{x+3}\) nguyên <=> \(9⋮x+3\)
x+3 | -9 | -3 | -1 | 1 | 3 | 9 |
x | -12(C) | -6(C) | -4(C) | -2(C) | 0(C) | 6(C) |
b)
\(P=A-B=\dfrac{2x-9}{\left(x-3\right)\left(x-2\right)}-\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{2x-9}{\left(x-3\right)\left(x-2\right)}-\dfrac{x^2-9}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{2x-9-x^2+9}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{2x-x^2}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{x\left(2-x\right)}{\left(x-3\right)\left(x-2\right)}\\ =-\dfrac{x\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}\\ =-\dfrac{x}{x-3}\)
c)
Để \(P\le1\) thì:
\(-\dfrac{x}{x-3}\le1\)
\(\Leftrightarrow\dfrac{x}{x-3}\ge1\\ \Leftrightarrow x-3-x\ge1\\ \Leftrightarrow-3\ge1\left(vô.lý\right)\)
Vậy không tồn tại giá trị x để \(P\le1\)
`HaNa♬D`
Làm lại nha cái này đúng, kia sai nha=)
b)
Với \(\left\{{}\begin{matrix}x\ne3\\x\ne2\end{matrix}\right.\)
\(P=A-B=(\dfrac{2x-9}{\left(x-3\right)\left(x-2\right)}-\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-2\right)})+\dfrac{2x-1}{x-3}\\ =\left(\dfrac{2x-9-x^2-9}{\left(x-3\right)\left(x-2\right)}\right)+\dfrac{\left(2x-1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{2x-x^2}{\left(x-3\right)\left(x-2\right)}+\dfrac{2x^2-4x-x+2}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{2x-x^2+2x^2-4x-x+2}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{x^2-3x+2}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{x^2-2x-x+2}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{x\left(x-2\right)-\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}=\dfrac{x-1}{x-3}\)
c)
Để P\(\ge1\) thì:
\(\dfrac{x-1}{x-3}\ge1\\ \Leftrightarrow x-3-x+1-1\ge0\\ \Leftrightarrow-3\ge0\left(vô.lý\right)\)
Vậy không tồn tại giá trị x để \(P\ge1\)
`HaNa☘D`
a) Ta có: \(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\)
\(=\dfrac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{11x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x^2-6x+x^2+4x+3+11x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x}{x-3}\)
b)
ĐKXĐ: \(x\notin\left\{3;-3;-1\right\}\)
Ta có: P=AB
\(=\dfrac{3x}{x-3}\cdot\dfrac{x-3}{x+1}\)
\(=\dfrac{3x}{x+1}\)
Để \(P=\dfrac{9}{2}\) thì \(\dfrac{3x}{x+1}=\dfrac{9}{2}\)
\(\Leftrightarrow9\left(x+1\right)=6x\)
\(\Leftrightarrow9x-6x=-9\)
\(\Leftrightarrow3x=-9\)
hay x=-3(loại)
Vậy: Không có giá trị nào của x để \(P=\dfrac{9}{2}\)