Cho đoạn thẳng AB=a. Gọi M là 1 điểm nằm giữa A và B. Vẽ về 1 phía của AB các hình vuông AMNP, BMLK có tâm theo thứ tự là C,D. Gọi I là trung điểm của CD
a) Tính khoảng cách từ I đến AB
b) Khi điểm M di chuyển trên đoạn thẳng AB thì điểm I di chuyển trên đoạn nào?
a. Kẻ \(CE\perp AM;DG\perp MB\) , ta thấy ngay CE = EM; DG = GM (Do AMNP, BMLKA là hình vuông)
Từ I kẻ IJ // CE // DG : IJ là đường trung bình hình thang CEGD. Vậy thì
\(IJ=\frac{EC+DG}{2}=\frac{EM+MG}{2}=\frac{AB}{4}=\frac{a}{4}.\)
Do \(IJ\perp AB\) nên khoảng cách từ I tới AB là IJ = \(\frac{a}{4}.\)
b. Do khoảng cách từ I tới AB không thay đổi nên khi M di chuyển trên AB thì I di chuyển trên đường thẳng song song AB, cách AB một khoảng bằng \(\frac{a}{4}.\)
Bài của mình giống cô giáo :
Câu hỏi của Nguyễn Minh Phương - Toán lớp 8 - Học toán với OnlineMath
Cậu tahm khảo bài của cô nha