Cho tam giác ABC có 3 góc nhọn , đường cao AH . CM : SABC=1/2.AB.AC.sinA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đo: ΔABC đồng dạng với ΔHBA
b: Ta có: ΔABC đồng dạg với ΔHBA
nên BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
c: Xét ΔABH vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay AD/AC=AE/AB
Xét ΔADE và ΔACB có
AD/AC=AE/AB
góc DAE chung
DO đó: ΔADE\(\sim\)ΔACB
a: Xét tứ giác ABDC có
I là trung điểm của BC
I là trung điểm của AD
Do đó: ABDC là hình bình hành
b: Xét ΔABC có
BF là đường cao
CE là đường cao
BF cắt CE tại H
Do đó: H là trực tâm của ΔABC
hay AH⊥BC
Em tham khảo bài tương tự tại đây nhé.
Câu hỏi của Lytranvietha 0_0 - Toán lớp 7 - Học toán với OnlineMath
Vẽ đường cao BK từ B xuống AC với B thuộc AC
ta có : sin góc bac = BK/AB
suy ra : 1/2*AB*AC*sinA = 1/2*AB*AC*(BK/AB) = 1/2*BK*AC = SABC ( đccm )
Chú ý : * là nhân nhé. Bạn tự vẽ hình
Nhớ k cho mình nha