Tính độ dài các cạnh bên của một hình thang vuông có hai đường chéo vuông góc, độ dài các đáy bằng 4cm và 9cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai đường chéo AC, BD cắt nhau tại H. Trong tam giác vuông ABD, ta có:
Kẻ đường cao CK của tam giác ABC, dễ thấy KB = AB – DC = 6 - 8/3 = 10/3.
Tam giác vuông ABD có D B 2 = A B 2 + A D 2 = 6 2 + 4 2 = 52, từ đó DB = 52 = 2 13 (cm)
Theo đề có:
\(\dfrac{HD}{BH}=\dfrac{AD^2}{AB^2}=\dfrac{4^2}{6^2}=\dfrac{4}{9}\)
Tam giác HDC ∼ tam giác HBA nên:
\(\dfrac{DC}{AB}=\dfrac{HD}{BH}=\dfrac{4}{9}\Rightarrow DC=AB.\dfrac{4}{9}=6.\dfrac{4}{9}=\dfrac{8}{3}\left(cm\right)\)
Từ C kẻ CK là đường cao của tam giác ABC có: \(KB=AB-DC=6-\dfrac{8}{3}=\dfrac{10}{3}\left(cm\right)\)
\(\Rightarrow BC=\dfrac{\sqrt{244}}{3}=\dfrac{2\sqrt{61}}{3}\left(cm\right)\)
Xét tam giác vuông ABD có \(BD=\sqrt{AB^2+AD^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)
a) P= (18+8).2=52 (cm) ; S=18.8=144 (cm2)
b) P=6.4=24 (cm) ; S= 62=36 (cm2)
c) P=4+10+5+5=24 (cm) ; S= \(\dfrac{\left(4+10\right).4}{2}\)=28 (cm2)
d) P=5.4=20 (cm) ; S= \(\dfrac{6.8}{2}\)=24 (cm2)
e) P=(10+14).2=48 (cm2) ; S (chiều cao ứng với cạnh 10cm)=10.8=80cm2; S (chiều cao ứng với cạnh 14cm)=14.8=112cm2