Cho a,b,c >0 biết a+b+c=abc. CMR: 1 \(\le\)\(\frac{a}{b^3}\)+ \(\frac{b}{c^3}\)+\(\frac{c}{a^3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{abc}\)
\(\Leftrightarrow\frac{abc}{a^3+b^3+abc}+\frac{abc}{b^3+c^3+abc}+\frac{abc}{c^3+a^3+abc}\le1\)
Áp dụng BDT \(ab\left(a+b\right)\le a^3+b^3\)thì ta có:
\(\frac{1abc}{a^3+b^3+abc}\le\frac{abc}{ab\left(a+b\right)+abc}=\frac{c}{a+b+c}\)
Tương tự ta có:
\(\hept{1\begin{cases}\frac{abc}{b^3+c^3+abc}\le\frac{a}{a+b+c}\\\frac{abc}{c^3+a^3+abc}\le\frac{b}{a+b+c}\end{cases}}\)
Cộng 3 cái trên vế theo vế ta được
\(\frac{abc}{a^3+b^3+abc}+\frac{abc}{b^3+c^3+abc}+\frac{abc}{c^3+a^3+abc}\le\frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\)
\(\Rightarrow\)ĐPCM
Với mọi a,b >0 có \(a^3+b^3\ge ab\left(a+b\right)\)(tự CM). Dấu "=" xảy ra <=> a=b và a,b>0
<=> \(a^3+b^3+abc\ge ab\left(a+b+c\right)\)
<=> \(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)
CM tương tự cx có :\(\frac{1}{b^3+c^3+abc}\le\frac{1}{bc\left(a+b+c\right)}\)
\(\frac{1}{c^3+a^3+abc}\le\frac{1}{ac\left(a+b+c\right)}\)
=>A= \(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ac\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}+\frac{a}{abc\left(a+b+c\right)}+\frac{b}{abc\left(a+b+c\right)}\)
<=> A\(\le\frac{1}{abc}\)
Dấu "=" xảy ra <=> a=b=c>0
Cho a,b,c>0
Cmr
\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{a^3+c^3+abc}\le\frac{1}{abc}\)
Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2-ab+b^2\ge ab\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)
BĐT đầu đúng => \(a^3+b^3\ge ab\left(a+b\right)\)đúng. Dấu "=" xảy ra <=> a=b
Áp dụng vào bài toán: \(a^3+b^3+abc\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)
\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)
Tương tự: \(\frac{1}{b^3+c^3+abc}\le\frac{1}{bc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{1}{ca\left(a+b+c\right)}\)
Cộng 3 cái trên lại: \(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)\(=\frac{c+a+b}{abc\left(a+b+c\right)}=\frac{1}{abc}.\)(đpcm)
Dấu "=" xảy ra <=> a=b=c.
một cửa hàng có 1 bao đường nặng 42kg. Ngày thứ nhất bán 2/7 bao đường. Ngày thứ hai bán 3/5 số đường còn lại. Hỏi sau hai ngày bán cửa hàng còn lai bao nhiêu kg đường
giải hộ mk nha
Ừ thì sai đề vô căn cứ đây!
Dễ dàng chứng minh bất đẳng thức phụ với \(a,b>0\), và với chú ý rằng nghịch đảo hai vế và đổi chiều bất đẳng thức khi \(a>b\) và \(ab>0\)
Ta có:
\(a^3+b^3\ge ab\left(a+b\right)\) \(\Leftrightarrow\) \(a^3+b^3+abc\ge ab\left(a+b+c\right)\) \(\Leftrightarrow\) \(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\) \(\left(1\right)\)
Hoàn toàn tương tự:
\(\frac{1}{b^3+c^3+abc}\le\frac{1}{bc\left(a+b+c\right)}\) \(\left(2\right)\) và \(\frac{1}{c^3+a^3+abc}\le\frac{1}{ca\left(a+b+c\right)}\) \(\left(3\right)\)
Cộng từng vế \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\), ta được:
\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(a=b=c\)
bạn xem lại dấu BĐT ?
bạn thử thế a=1 c=2 b=3 vào là bik ngay đề sai
Đặt \(\hept{\begin{cases}\frac{1}{a}=x\\\frac{1}{b}=y\\\frac{1}{c}=z\end{cases}}\)Thì điều kiện và điều cần chứng minh trở thành
xy + yz + xz = 1
\(1\le\frac{x^3}{z}+\frac{y^3}{x}+\frac{z^3}{y}\)
Ta có VP = \(1\frac{x^4}{xz}+\frac{y^4}{xy}+\frac{z^4}{yz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+yz+xz}\)
\(\ge1\frac{\left(xy+yz+xz\right)^2}{xy+yz+xz}=xy+yz+xz=1\)
=> ĐPCM là đúng