K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2016

Đặt \(\hept{\begin{cases}\frac{1}{a}=x\\\frac{1}{b}=y\\\frac{1}{c}=z\end{cases}}\)Thì điều kiện và điều cần chứng minh trở thành

xy + yz + xz = 1

\(1\le\frac{x^3}{z}+\frac{y^3}{x}+\frac{z^3}{y}\)

Ta có VP = \(1\frac{x^4}{xz}+\frac{y^4}{xy}+\frac{z^4}{yz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+yz+xz}\)


\(\ge1\frac{\left(xy+yz+xz\right)^2}{xy+yz+xz}=xy+yz+xz=1\)

=> ĐPCM là đúng 

12 tháng 5 2017

Ta có:

\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{abc}\)

\(\Leftrightarrow\frac{abc}{a^3+b^3+abc}+\frac{abc}{b^3+c^3+abc}+\frac{abc}{c^3+a^3+abc}\le1\)

Áp dụng BDT \(ab\left(a+b\right)\le a^3+b^3\)thì ta có:

\(\frac{1abc}{a^3+b^3+abc}\le\frac{abc}{ab\left(a+b\right)+abc}=\frac{c}{a+b+c}\)

Tương tự ta có:

\(\hept{1\begin{cases}\frac{abc}{b^3+c^3+abc}\le\frac{a}{a+b+c}\\\frac{abc}{c^3+a^3+abc}\le\frac{b}{a+b+c}\end{cases}}\)

Cộng 3 cái trên vế theo vế ta được

\(\frac{abc}{a^3+b^3+abc}+\frac{abc}{b^3+c^3+abc}+\frac{abc}{c^3+a^3+abc}\le\frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\)

\(\Rightarrow\)ĐPCM

12 tháng 5 2017

demonstrate that \(a^3+b^3\ge ab\left(a+b\right)\)

8 tháng 9 2019

Với mọi a,b >0 có \(a^3+b^3\ge ab\left(a+b\right)\)(tự CM). Dấu "=" xảy ra <=> a=b và a,b>0

<=> \(a^3+b^3+abc\ge ab\left(a+b+c\right)\)

<=> \(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)

CM tương tự cx có :\(\frac{1}{b^3+c^3+abc}\le\frac{1}{bc\left(a+b+c\right)}\)

\(\frac{1}{c^3+a^3+abc}\le\frac{1}{ac\left(a+b+c\right)}\)

=>A= \(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ac\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}+\frac{a}{abc\left(a+b+c\right)}+\frac{b}{abc\left(a+b+c\right)}\)

<=> A\(\le\frac{1}{abc}\)

Dấu "=" xảy ra <=> a=b=c>0

8 tháng 9 2019

Liên hệ giữa phép chia và phép khai phương

21 tháng 7 2018

Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2-ab+b^2\ge ab\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)

BĐT đầu đúng => \(a^3+b^3\ge ab\left(a+b\right)\)đúng. Dấu "=" xảy ra <=> a=b

Áp dụng vào bài toán: \(a^3+b^3+abc\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)

Tương tự: \(\frac{1}{b^3+c^3+abc}\le\frac{1}{bc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{1}{ca\left(a+b+c\right)}\)

Cộng 3 cái trên lại: \(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)\(=\frac{c+a+b}{abc\left(a+b+c\right)}=\frac{1}{abc}.\)(đpcm)

Dấu "=" xảy ra <=> a=b=c.

21 tháng 7 2018

một cửa hàng có 1 bao đường nặng 42kg. Ngày thứ nhất bán 2/7 bao đường. Ngày thứ hai bán 3/5 số đường còn lại. Hỏi sau hai ngày bán cửa hàng còn lai bao nhiêu kg đường

giải hộ mk nha

23 tháng 3 2016

Ừ thì sai đề vô căn cứ đây!

Dễ dàng chứng minh bất đẳng thức phụ với  \(a,b>0\), và với chú ý rằng nghịch đảo hai vế và đổi chiều bất đẳng thức khi  \(a>b\) và  \(ab>0\)

Ta có:

\(a^3+b^3\ge ab\left(a+b\right)\)  \(\Leftrightarrow\)  \(a^3+b^3+abc\ge ab\left(a+b+c\right)\)  \(\Leftrightarrow\)  \(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)  \(\left(1\right)\)

Hoàn toàn tương tự:

\(\frac{1}{b^3+c^3+abc}\le\frac{1}{bc\left(a+b+c\right)}\)  \(\left(2\right)\)  và  \(\frac{1}{c^3+a^3+abc}\le\frac{1}{ca\left(a+b+c\right)}\)  \(\left(3\right)\) 

Cộng từng vế \(\left(1\right);\)  \(\left(2\right)\)  và  ​\(\left(3\right)\), ta được:

\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\)  \(a=b=c\)

23 tháng 3 2016

bạn xem lại dấu BĐT ?

bạn thử thế a=1 c=2 b=3 vào là bik ngay đề sai

6 tháng 7 2016

Trả lời hộ mình đi