Một xưởng có kế hoạch in xong 6000 quyển sách giống nhau trong một thời gian quy định, biết số quyển sách in được trong một ngày là bằng nhau. Để hoàn thành sớm kế hoạch, mỗi ngày xưởng đã in nhiều hơn 300 quyển sách so với số quyển sách phải in trong kế hoạch, nên xưởng in xong 6000 quyển sách nói trên sớm hơn kế hoạch 1 ngày. Tính số quyển sách xưởng in được trong 1 ngày theo kế hoạch
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x (quyển sách) là số quyển sách xưởng in được trong mỗi ngày theo kế hoạch (x ∈ ℕ * )
Số ngày in theo kế hoạch: 6000/x (ngày)
Số quyển sách xưởng in được thực tế trong mỗi ngày: x + 300 (quyển sách)
Số ngày in thực tế: 6000/(x+300) (ngày)
Theo đề bài ta có phương trình:
Vậy số quyển sách xưởng in được trong mỗi ngày theo kế hoạch là: 1200 (quyển sách)
Đáp án: D
Gọi x là số sách in được trong 1 ngày theo kế hoạch
\(\Rightarrow\)Số sách in được mỗi ngày để hoàn thành sớm kế hoạch là x+300
\(\Rightarrow\)Thời gian in 6000 quyển sách theo kế hoạch là\(\frac{6000}{x}\)
\(\Rightarrow\)Thời gian in 6000 quyển sách để hoàn thành sớm kế hoạch là\(\frac{6000}{x+300}\)
Ta có phương trình \(\frac{6000}{x}\)=\(\frac{6000}{x+300}\)+1\(\Rightarrow\)x=1200(bạn tự giải phương trình nhé)
\(\Rightarrow\)Số quyển sách xương in được trong 1 ngày theo kế hoạch là 1200 quyển
Gọi x là số quyển sách xưởng in được trong mỗi ngày theo kế hoạch ( x nguyên dương )
Số ngày in theo kế hoạch : 6000/x ( ngày )
Số quyển sách xưởng in được thực tế trong mỗi ngày : x + 300 ( quyển sách )
Số ngày in thực tế : 6000/[x+3]( ngày )
Theo đề bài ta có phương trình : 6000/x -6000/[x+3]= 1
<=> x^2 +300.x 1 800 000 = 0
Giải được : x1 = 1200 [nhận] ; x2 = -1500 [loại]
Vậy số quyển sách xưởng in được mỗi ngày theo kế hoạch là 1200 quyển sách
Gọi x là số quyển sách xưởng in được trong mỗi ngày theo kế hoạch ( x nguyên dương )
Số ngày in theo kế hoạch : 6000/x ( ngày )
Số quyển sách xưởng in được thực tế trong mỗi ngày : x + 300 ( quyển sách )
Số ngày in thực tế : 6000/[x+3]( ngày )
Theo đề bài ta có phương trình : 6000/x -6000/[x+3]= 1
<=> x^2 +300.x 1 800 000 = 0
Giải được : x1 = 1200 [nhận] ; x2 = -1500 [loại]
Vậy số quyển sách xưởng in được mỗi ngày theo kế hoạch là 1200 quyển sách
- Gọi số áo phải may theo kế hoạch trong 1 ngày là x \(\left(x\in N,x>0\right)\)
- Thời gian quy định may xong 3000 áo là \(\frac{3000}{x}\)( ngày )
- Số áo thực tế may được trong 1 ngày là : x + 6 ( áo )
- Thời gian may xong 2650 áo là \(\frac{2650}{x+6}\)( ngày )
- Vì xưởng may xong 2650 áo trước khi hết han 5 ngày nên ta có phương trình :
\(\frac{3000}{x}-5=\frac{2650}{x+6}\)
Giải PT trên :
\(3000\left(x+6\right)-5x\left(x+6\right)=2650x\)hay \(x^2-64x-3600=0\)
\(\Delta'=32^2+3600=4624\); \(\sqrt{\Delta'}=68\)
\(x_1=32+68=100\); \(x_2=32-68=-36\)
\(x_2=-36\left(KTM\right)\)
vậy theo kế hoạch , mỗi ngày xưởng đó phải may xong 100 áo
Gọi số áo mà xưởng may trong một ngày theo kế hoạch là x ( x > 0 )
Số ngày may xong 3000 áo là \(\frac{3000}{x}\)( ngày )
Để hoàn thành sớm kế hoạch, mỗi ngày xưởng đã may thêm nhiều hơn 6 áo
=> Thực tế mỗi xưởng đã may được ( x + 6 ) áo
5 ngày trước khi hết hạn là \(\frac{3000}{x}-5\)( ngày )
Thời gian xưởng may xong 2650 áo là \(\frac{2650}{x+6}\)( ngày )
5 ngày trước khi hết hạn = thời gian xưởng may xong 2650 áo
=> Ta có phương trình :\(\frac{3000}{x}-5=\frac{2650}{x+6}\)
<=> \(\frac{3000}{x}-5-\frac{2650}{x+6}=0\)
<=> \(\frac{3000\left(x+6\right)}{x\left(x+6\right)}-\frac{5x\left(x+6\right)}{x\left(x+6\right)}-\frac{2650x}{x\left(x+6\right)}=0\)
<=> \(\frac{3000x+18000-5x^2-30x-2650x}{x\left(x+6\right)}=0\)
<=> \(\frac{-5x^2+320x+18000}{x\left(x+6\right)}=0\)
=> -5x2 + 320x + 18000 = 0
Δ' = b'2 - ac = 1602 - (-5).18000 = 115 600
Δ' > 0 nên phương trình có hai nghiệm phân biệt :
\(x_1=\frac{-b'+\sqrt{\text{Δ}'}}{a}=\frac{-160+\sqrt{115600}}{-5}=-36\left(loai\right)\)
\(x_2=\frac{-b'-\sqrt{\text{Δ}'}}{a}=\frac{-160-\sqrt{115600}}{-5}=100\left(nhan\right)\)
Vậy theo kế hoạch, mỗi ngày xưởng phải may 100 áo
Gọi x là sản ppham xưởng sản xuất trong 1 ngày theo kế hoạch (x>0)
=>Số ngày theo kế hoạch là :\(\frac{110}{x}\)
Số ngày thực tế là \(\frac{1100}{x+5}\)theo gia thiet cua bai toan ta co :
\(\frac{1100}{x}-\frac{1100}{x+5}=2\)
<=>1100(x+5)-1100x=2x(x+5)
<=>2x^2+10x-5500=0
<=>x=50hay x=-55 loai
Vậy theo kế hoạch mỗi ngày phân xưởng phải sản xuất là 50 sản phẩm
Gọi số sản phẩm mà phân xưởng làm trong 1 ngày là x ( x > 0 )
=> Số ngày quy định = \(\frac{1100}{x}\)( ngày )
Mỗi ngày phân xưởng sản xuất vượt mức 5 sản phẩm
=> Số ngày hoàn thành = \(\frac{1100}{x+5}\)( ngày )
Vì thế kế hoạch hoàn thành sớm hơn quy định 2 ngày
=> Ta có phương trình : \(\frac{1100}{x}-\frac{1100}{x+5}=2\)
\(\Leftrightarrow\frac{1100\left(x+5\right)}{x\left(x+5\right)}-\frac{1100\cdot x}{x\left(x+5\right)}=\frac{2x\left(x+5\right)}{x\left(x+5\right)}\)
\(\Leftrightarrow1100x+5500-1100x=2x^2+10x\)
\(\Leftrightarrow2x^2+10x-1100x-5500+1100x=0\)
\(\Leftrightarrow2x^2+10x-5500=0\)
\(\Delta'=b'^2-ac=5^2-2\cdot\left(-5500\right)=25+11000=11025\)
\(\Delta'>0\)nên phương trình đã cho có hai nghiệm phân biệt :
\(\hept{\begin{cases}x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-5+\sqrt{11025}}{2}=50\\x_2=\frac{-b-\sqrt{\Delta'}}{a}=\frac{-5-\sqrt{11025}}{2}=-55\end{cases}}\)
x > 0 => x = 50
Vậy theo kế hoạch , mỗi ngày phân xưởng sản xuất 50 sản phẩm
Gọi số khẩu trang mỗi ngày phải may là x
Theo đề, ta có: 300/x-280/(x+10)=3
=>(300x+3000-280x)/(x^2+10x)=3
=>3x^2+30x=20x+3000
=>x=30
gọi số sản phẩ mỗi ngày là x(sản phẩm)(0<x<1100,x\(\in N\))
gọi thời gian làm dự định là y(ngày)(y>0)
=>hệ pt:\(\left\{{}\begin{matrix}xy=1100\\y-\dfrac{1100}{x+5}=2\end{matrix}\right.\)\(< =>\left\{{}\begin{matrix}y=\dfrac{1100}{x}\\\dfrac{1100}{x}-\dfrac{1100}{x+5}=2\left(1\right)\end{matrix}\right.\)
*giải pt(1)\(=>\left\{{}\begin{matrix}x=50\left(TM\right)\\x=-55\left(loai\right)\end{matrix}\right.\)
Vậy....
Gọi số sản phẩm họ làm trong 1 ngày theo kế hoạch là x
Gọi số sản phẩm họ làm trong 1 ngày thực tế là y
(sản phẩm/ngày; x; y \(\in N\)*)
Do thực tế, mỗi ngày họ vượt mức 5 sản phẩm => Ta có phương trình:
y - x = 5 (1)
Thời gian họ sản xuất theo kế hoạch là \(\dfrac{1100}{x}\) (ngày)
Thời gian họ sản xuất thực tế là \(\dfrac{1100}{y}\) (ngày)
Do phân xưởng đó hoàn thành kế hoạch sớm hơn 2 ngày => Ta có phương trình:
\(\dfrac{1100}{x}-\dfrac{1100}{y}=2\)
<=> \(\dfrac{1100y-1100x-2xy}{xy}=0\)
<=> \(1100\left(y-x\right)-2xy=0\)
<=> \(5500-2xy=0\)
<=> \(xy=2750< =>x=\dfrac{2750}{y}\)
Thay x = \(\dfrac{2750}{y}\) vào phương trình (1), ta có:
\(y-\dfrac{2750}{y}=5\)
<=> \(y^2-5y-2750=0\)
<=> (y-55)(y+50) = 0
<=> \(\left[{}\begin{matrix}y=55\left(c\right)\\y=-50\left(l\right)\end{matrix}\right.\)
<=> x = 50 (c)
Theo kế hoạch, mỗi ngày phân xưởng sản xuất được 50 sản phẩm
\(\text{# }LQuyen\)
Gọi số sách xưởng in được trong \(1\) ngày là : \(x\) \((x ∈ N ^∗) \)
Số ngày xưởng dự định in hết \(6000\) quyển sách là :
\(\dfrac{6000}{x}\left(ngày\right)\)
Số sách thực tế xưởng in dc trong \(1\) ngày là : \(x+300\) ( quyển sách)
Số ngày xưởng in hết \(6000\) quyển sách với ns thực tế là :
\(\dfrac{6000}{x}-\dfrac{6000}{x+300}=1\)
\(\dfrac{6000\left(x+300\right)-6000x}{x\left(x+300\right)}=1\)
\(\dfrac{1800000}{x\left(x+300\right)}=1\)
\(x^2+300x-1800000=0\)
\((x-1200)(x+1500)=0\)
\(\left[{}\begin{matrix}x=1200\left(tm\right)\\x=-1500\left(loại\right)\end{matrix}\right.\)