Tìm a\(_1\);a\(_2\);a\(_3\);.....a\(_{100}\)biết a\(_1\)-1/100=a\(_2\)-2/99=a\(_3\)-3/98=.....=a\(_{100}\)-100/1
và a\(_1\)+a\(_2\)+....+a\(_{100}\)=10100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\Delta=\left(-1\right)^2-4\cdot1\cdot\left(-2m-10\right)\)
\(=1+4\left(2m+10\right)\)
\(=8m+41\)
Để phương trình (1) có nghiệm thì \(8m+41\ge0\)
hay \(m\ge-\dfrac{41}{8}\)
\(\Delta=\left(4m+1\right)^2-8\left(m-4\right)=16m^2+33>0;\forall m\)
Pt luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-4m-1\\x_1x_2=2m-8\end{matrix}\right.\)
a. Kết hợp hệ thức Viet và đề bài: \(\left\{{}\begin{matrix}x_1+x_2=-4m-1\\x_2-x_1=17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=-2m-9\\x_2=-2m+8\end{matrix}\right.\)
Thế vào \(x_1x_2=2m-8\)
\(\Rightarrow\left(-2m-9\right)\left(-2m+8\right)=2m-8\)
\(\Leftrightarrow m^2-9m+20=0\Rightarrow\left[{}\begin{matrix}m=4\\m=5\end{matrix}\right.\)
b.
\(A=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(A=\left(4m+1\right)^2-8\left(m-4\right)\)
\(A=16m^2+33\ge33\)
\(A_{min}=33\) khi \(m=0\)
c.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-4m-1\\x_1x_2=2m-8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-4m-1\\2x_1x_2=4m-16\end{matrix}\right.\)
Cộng vế với vế:
\(x_1+x_2+2x_1x_2=-17\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m
\(=x_1x_2-2x_1^2-2x_2^2+2x_1x_2=3x_1x_2-2\left(x_1^2+x_2^2\right)\)
\(=3x_1x_2-2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\)
\(=3x_1x_2-2\left(x_1+x_2\right)^2+4x_1x_2\)
\(=7x_1x_2-2\left(x_1+x_2\right)^2\)
\(\left(x_1-2x_2\right)\left(x_2-2x_1\right)=x_1x_2-2x_1^2-2x_2^2+4x_1x_2=5x_1x_2-2\left(x_1^2+x_2^2\right)=5x_1x_2-2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\)
Đến đây bạn thế Vi-ét vào nhé:D
a) TA CÓ: GÓC A LÀ GÓC ĐỐI DIỆN VỚI CẠNH BC
GÓC A1 LÀ GÓC ĐỐI DIỆN VỚI CẠNH B1C1
MÀ BC> B1C1 (GT); AB=A1B1 (GT); AC=A1C1(GT)
=> GÓC A > GÓC A1 ( ĐỊNH LÍ)
B) TA CÓ : BC LÀ CẠNH ĐỐI DIỆN VỚI GÓC A
B1C1 LÀ CẠNH ĐỐI DIỆN VỚI GÓC A1
MÀ GÓC A> A1 ( GT); AB=A1B1 (GT); AC =A1C1 ( GT)
=> BC> B1C1 ( ĐỊNH LÍ)
CHÚC BN HỌC TỐT!!!!!!!!
\(\frac{a_1-1}{100}=\frac{a_2-2}{99}=\frac{a_3-3}{98}=...=\frac{a_{100}-100}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a_1-1+a_2-2+a_3-3+...+a_{100}-100}{1+2+3+...+100}\)\(=\)\(\frac{a_1+a_2+a_3+...+a_{100}-\left(1+2+3+...+100\right)}{1+2+3+...+100}\)
\(=\)\(\frac{10100-5050}{5050}\)vì \(1+2+3+...+100=5050\)
\(=\) \(\frac{5050}{5050}\)\(=\)\(1\)
Ta có \(\frac{a_1-1}{100}=1\Rightarrow a_1-1=100\Rightarrow a_1=101\)
\(\frac{a_2-2}{99}=1\Rightarrow a_2-2=99\Rightarrow a_2=101\)
\(\frac{a_3-3}{98}=1\Rightarrow a_3-3=98\Rightarrow a_3=101\)
\(....\)
\(\frac{a_{100}-100}{1}=1\Rightarrow a_{100}-100=1\Rightarrow a_{100}=101\)
Vậy \(a_1=a_2=a_3=....=a_{100}=101\)