K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2022

\(B>\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{30.31}\)

\(B>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{30}-\dfrac{1}{31}\)

\(B>\dfrac{1}{2}-\dfrac{1}{31}=\dfrac{29}{62}\left(đpcm\right)\)

6 tháng 5 2022

\(B>\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{30.31}\)

\(B>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{30}-\dfrac{1}{31}\)

\(B>\dfrac{1}{2}-\dfrac{1}{31}=\dfrac{29}{62}\left(đpcm\right)\)

17 tháng 2 2020

Ta có :

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)

\(\Rightarrow A>\frac{1}{2^2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

\(\Leftrightarrow A>\frac{1}{2^2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{2^2}+\frac{1}{3}-\frac{1}{10}=\frac{29}{60}\left(1\right)\)

Lại có :

\(A< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)

\(\Leftrightarrow A< \frac{1}{2^2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

\(=\frac{1}{2^2}+\frac{1}{2}-\frac{1}{9}=\frac{23}{36}\left(2\right)\)

\(\frac{23}{36}< \frac{24}{36}=\frac{2}{3}\left(3\right)\)

Từ (1), (2) và (3) suy ra \(\frac{29}{60}< A< \frac{2}{3}\)

17 tháng 2 2020

Cám ơn bạn