Cho B=1/1^2+1/3^2+1/4^2+.._+1/2021.2023. Chứng minh rằng 29/62
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)
\(\Rightarrow A>\frac{1}{2^2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(\Leftrightarrow A>\frac{1}{2^2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2^2}+\frac{1}{3}-\frac{1}{10}=\frac{29}{60}\left(1\right)\)
Lại có :
\(A< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)
\(\Leftrightarrow A< \frac{1}{2^2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
\(=\frac{1}{2^2}+\frac{1}{2}-\frac{1}{9}=\frac{23}{36}\left(2\right)\)
Mà \(\frac{23}{36}< \frac{24}{36}=\frac{2}{3}\left(3\right)\)
Từ (1), (2) và (3) suy ra \(\frac{29}{60}< A< \frac{2}{3}\)