Tìm tất cả các cặp số nguyên (x,y) sao cho:x(x+1)=y^2+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $x+y=a; 3x+2y=b$ với $a,b\in\mathbb{Z}$ thì pt trở thành:
$ab^2=b-a-1$
$\Leftrightarrow ab^2+a+1-b=0$
$\Leftrightarrow a(b^2+1)+(1-b)=0$
$\Leftrightarrow a=\frac{b-1}{b^2+1}$
Để $a$ nguyên thì $b-1\vdots b^2+1$
$\Rightarrow b^2-b\vdots b^2+1$
$\Rightarrow (b^2+1)-(b+1)\vdots b^2+1$
$\Rightarrow b+1\vdots b^2+1$
Kết hợp với $b-1\vdots b^2+1$
$\Rightarrow (b+1)-(b-1)\vdots b^2+1$
$\Rightarrow 2\vdots b^2+1$
Vì $b^2+1\geq 1$ nên $b^2+1=1$ hoặc $b^2+1=2$
Nếu $b^2+1=1\Rightarrow b=0$. Khi đó $a=\frac{b-1}{b^2+1}=-1$
Vậy $x+y=-1; 3x+2y=0\Rightarrow x=2; y=-3$ (tm)
Nếu $b^2+1=2\Rightarrow b=\pm 1$
Với $b=1$ thì $a=\frac{b-1}{b^2+1}=0$
Vậy $x+y=0; 3x+2y=1\Rightarrow x=1; y=-1$ (tm)
Với $b=-1$ thì $a=-1$
Vậy $x+y=-1; 3x+2y=-1\Rightarrow x=1; y=-2$ (tm)
Câu trả lời hay nhất: trừu tượng. nếu không nguyên
có lẽ là đề tìm điều kiện (x+y) thôi vì x+y không cố định
đặt x+y=a=> y=a-x
thay vào pt điều kiện
2(x^2+1)+x^2=2(a-x)(x+1)
3x^2+2 =2ax+2a-2x^2-2x
5x^2+2x-2ax+2-2a=0
5x^2+2(1-a)x+2(1-a)=0
(1-a)^2-10(1-a)>=0
(1-a)(1-a-10)>=0
(a-1)(a+9)>=0
a<=-9
hoặc
a>=1
(x+y)<-9 hoặc (x+y)>=1
Bạn ơi bạn đề có x và y thuộc số tự nhiên không ?
xy + 2x + y - 1 = 0
<=> x(y + 2) + (y + 2) = 3
<=> (x + 1)(y + 2) = 3 = 1.3 = (-1).(-3)
Lập bảng:
x + 1 | 1 | -1 | 3 | -3 |
y + 2 | 3 | -3 | 1 | -1 |
x | 0 | -2 | 2 | -4 |
y | 1 | -5 | -1 | -3 |
Vậy ....
xy+2x+y-1=0
<=> x(y+2)+(y+2)=3
<=> (y+2)(x+1)=3
x,y nguyên => y+2; x+1 nguyên
=> y+2;x+1\(\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Ta có bảng
x+1 | -3 | -1 | 1 | 3 |
x | -4 | -2 | 0 | 2 |
y+2 | -1 | -3 | 3 | 1 |
y | -3 | -5 | 1 | -1 |
Vậy (x;y)={(-4;-3);(-2;-5);(0;1);(2;-1)}
Ta có: xy - 2x + y + 1 = 0
=> x(y - 2) + (y - 2) = -3
=> (x + 1)(y - 2) = -3
=> x + 1; y - 2 \(\in\)Ư(-3) = {1; -1; 3; -3}
Lập bảng:
x + 1 | 1 | -1 | 3 | -3 |
y - 2 | -3 | 3 | -1 | 1 |
x | 0 | -2 | 2 | -4 |
y | -1 | 5 | 1 | 3 |
Vậy ...
x.y - 2x + y + 1 = 0
<=>x(y-2) + (y-2) =-3
<=> (y-2)(x+1)=-3
th1: y-2 =1 ; x+1=-3
<=> x=-4 ; y=3
th2 y-2 =-1 ; x+1 =3
<=> y=1 ; x=2
th3 y-2 =3 ; x+1=-1
<=> y=5 ; x=-2
th4 y-2 =-3; x+1 = 1
<=> y=-1 ; x=0
\(x.\left(y-1\right)+y=2\)
\(x.\left(y-1\right)+\left(y-1\right)=2-1\)
\(\left(y-1\right)\left(x-1\right)=1\)
(y-1) ; (x-1) có 2 cặp: \(y-1=1;x-1=1\) hoặc \(y-1=-1;x-1=-1\)
\(x;y\) có 2 cặp: \(y=2;x=2\) hoặc \(y=0;x=0\)
\(x\cdot\left(y-1\right)+y=2\\ xy-x+y=2\\ y\cdot\left(x+1\right)-x-1=2-1\\ y\cdot\left(x+1\right)-\left(x+1\right)=1\\ \left(x+1\right)\left(y-1\right)=1\)
mà `x;y in ZZ => x+1;y-1 in ZZ`
nên `x+1;y-1` thuộc ước nguyên của `1`
`=>x+1;y-1 in {1;-1}`
`=>x in {0;-2}; y in {2;0}`
Ta có:\(x\left(x+1\right)=y^2+1\Leftrightarrow x^2+x=y^2+1\Leftrightarrow4x^2+4x+1=4y^2+5\)
\(\Leftrightarrow\left(2x+1\right)^2-4y^2=5\Leftrightarrow\left(2x+2y+1\right).\left(2x-2y+1\right)=5\)
Do x,y thuộc Z nên 2x+2y+1 và 2x-2y+1 là ước của 5
Ta có bảng giá trị :
Vậy \(\left(x;y\right)\in\left\{\left(1;-1\right);\left(1;1\right);\left(-2;1\right);\left(-2;-1\right)\right\}\)