K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2016

Ta có \(A=3.3^n+3^n-1=4.3^n-1\)

\(B=6.3^n-3^n+1=5.3^n+1\)

Khi đó \(A+B=4.3^n-1+5.3^n+1=9.3^n=3^{n+2}\)

Vì (3;7) = 1 nên A + B không chia hết cho 7.

Vậy trong A và B tồn tại ít nhất 1 số không chia hết cho 7.

27 tháng 6 2016

Xét tổng : a + b = (    3n+1 + 3n - 1 ) + ( 2.3n+1 - 3n + 1 )

                 a+b = 3 . 3 n+1 = 3n+2 \(⋮̸\) 7 

Nếu cả hai số a , b đều chia hết cho 7 thì a + b \(⋮\) 7 ( mâu thuẫn với kết quả trên )

Do đó trong hai số a , b có ít nhất 1 số không chia hết cho 7

28 tháng 6 2016

cảm ơn bạn nhé

 

7 tháng 1 2020

giúp mình với

thanhks

24 tháng 11 2016

b)

a=3n+1+3n-1=3n(3+1)-1=3n*4-1

Để a chia hết cho 7 thì aEB(7)={1;7;14;28;35;...}

=>{3n*4}E{2;8;15;29;36;...}

=>3nE{9;...} => nE{3;...}

b=2*3n+1-3n+1=3n*(6-1)+1=3n*5+1

Để b chia hết cho 7 thì bEB(7)={1;7;14;28;35;...}

=>{3N*5}E{0;6;13;27;34;...}

=>3NE{0;...}

=>NE{0;...}

=>đpcm(cj ko chắc cách cm này)