Trong n+1 số tự nhiên bất kì chắc chán có hai số có hiệu chia hết cho m
Giúp mình nhé mai mik phải nộp rùi ai đúng mình tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có:
a=13.15.17+35
a=13.3.5.17+5.7
a=5.(13.3.17+7)
Vì \(5⋮5\)
\(\Rightarrow5\cdot\left(13\cdot3\cdot17+7\right)⋮5\)
hay \(a⋮5\)
Vậy \(a⋮5\)
a là hợp số vì \(a⋮5\)
Bài 2:
Ta thấy:
Một số khi chia cho 5 số có 5 khả năng về số dư là: 0; 1; 2; 3; 4; 5.
=> Khi 6 số tự nhiên chia cho 5 sẽ có ít nhất 2 số có cùng số dư khi chia cho 5 (1)
Đặt 2 số đó là: a=5k+x; b=5n+x \(\left(a,b,n,k,x\in N\right)\)
=>a-b=5k+x-(5n+x)=5k+x-5n-x=5k-5n=5(k-n)
Vì \(5⋮5\)
\(\Rightarrow5\left(k-n\right)⋮5\)
=> Hiệu của 2 số có cùng số dư khi chia cho 5 chia hết cho 5 (2)
Từ (1) và (2)
=> Trong 5 số tự nhiên bất kì ta luôn tìm được 2 trong 6 số có hiệu chia hết cho 5. (đpcm)
Gọi số dư của a và b khi chia cho m là n.
Ta có: a=m.k+ n
b=m.h+n
=>a-b=m.k+n-(m.h+n)=m.k+n-m.h-n=(m.k-m.h)+(n-n)=m.(k-h) chia hết cho m
=>a-b chia hết cho m
=>ĐPCM