K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 4 2021

\(\Leftrightarrow x^3-\left(m-1\right)x^2-\left(m-1\right)x-2x^2+2\left(m-1\right)x+2m-2=0\)

\(\Leftrightarrow x\left(x^2-\left(m-1\right)x-m+1\right)-2\left(x^2-\left(m-1\right)x-m+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2-\left(m-1\right)x-m+1\right)=0\)

11 tháng 3 2021

\(x^3+\left(2m+5\right)x^2+\left(2m+6\right)x-4m-12=\left(x^3-x^2\right)+\left[\left(2m+6\right)x^2-\left(2m+6\right)x\right]+\left[\left(4m+12\right)x-\left(4m+12\right)\right]=\left[x^2+\left(2m+6\right)x+\left(4m+12\right)\right]\left(x-1\right)\)

a: =(x-3)(2x+5)

b: \(\Leftrightarrow\left(x-2\right)\left(x+2+3-2x\right)=0\)

=>(x-2)(5-x)=0

=>x=2 hoặc x=5

c: =>x-1=0

hay x=1

6 tháng 2 2022

TK

c)=\(\left(x-1\right)^3=0\)=>x=1

29 tháng 11 2023

a: \(a\left(x-y\right)-b\left(y-x\right)+c\left(x-y\right)\)

\(=a\left(x-y\right)+b\left(x-y\right)+c\left(x-y\right)\)

\(=\left(x-y\right)\left(a+b+c\right)\)

b: \(a^m-a^{m+2}\)

\(=a^m-a^m\cdot a^2\)

\(=a^m\left(1-a^2\right)\)

\(=a^m\left(1-a\right)\left(1+a\right)\)

17 tháng 5 2021

`B=(x-x/(x+1))-(1-x/(x+1))`

`đkxđ:x ne +-1`

`=((x^2+x-x)/(x+1))-(x+1-x)/(x+1)`

`=x^2/(x+1)-1/(x+1)`

`=(x^2-1)/(x+1)`

`=((x-1)(x+1))/(x+1)`

`=x-1`

`2)(x-1)^2-25`

`=(x-1)^2-5^2`

`=(x-1-5)(x-1+5)`

`=(x-6)(x+4)`

Bài 1: 

Ta có: \(B=\left(x-\dfrac{x}{x+1}\right)-\left(1-\dfrac{x}{x+1}\right)\)

\(=\left(\dfrac{x\left(x+1\right)-x}{x+1}\right)-\left(\dfrac{x+1-x}{x+1}\right)\)

\(=\dfrac{x^2+x-x-\left(x+1-x\right)}{x+1}\)

\(=\dfrac{x^2-1}{x+1}=x-1\)

17 tháng 10 2023

\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)

\(=3\left(x^4+x^2+1\right)-\left(x^4+x^2+1+2x^3+2x^2+2x\right)\)

\(=2\left(x^4+x^2+1\right)-2\left(x^3+x^2+x\right)\)

\(=2\left(x^4+x^2+1-x^3-x^2-x\right)\)

\(=2\left(x^4-x^3-x+1\right)\)

\(=2\left(x^3\left(x-1\right)-\left(x-1\right)\right)\)

\(=2\left(x-1\right)\left(x^3-1\right)\)

\(=2\left(x-1\right)^2\left(x^2+x+1\right)\)

17 tháng 10 2023

\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)

\(=3\left[x^4+2x^2+1-x^2\right]-\left(x^2+x+1\right)^2\)

\(=3\left[\left(x^2+1\right)^2-x^2\right]-\left(x^2+x+1\right)^2\)

\(=3\left(x^2+x+1\right)\left(x^2-x+1\right)-\left(x^2+x+1\right)^2\)

\(=\left(x^2+x+1\right)\left(3x^2-3x+3-x^2-x-1\right)\)

\(=\left(x^2+x+1\right)\left(2x^2-4x+2\right)\)

\(=2\left(x-1\right)^2\cdot\left(x^2+x+1\right)\)

9 tháng 11 2021

\(a,\Delta=4\left(m-1\right)^2-4\left(-2m-3\right)=4m^2-8m+4+8m+12\\ \Delta=4m^2+16>0\left(đpcm\right)\\ b,\Delta=\left(2m-1\right)^2-4\left(2m-2\right)=4m^2-4m+1-8m+8\\ \Delta=4m^2-12m+9=\left(2m-3\right)^2\ge0\left(đpcm\right)\\ c,Sửa:x^2-2\left(m+1\right)x+2m-2=0\\ \Delta=4\left(m+1\right)^2-4\left(2m-2\right)=4m^2+8m+4-8m+8\\ \Delta=4m^2+12>0\left(đpcm\right)\\ d,\Delta=4\left(m+1\right)^2-4\cdot2m=4m^2+8m+4-8m\\ \Delta=4m^2+4>0\left(đpcm\right)\\ e,\Delta=4m^2-4\left(m+7\right)=4m^2-4m+7=\left(2m-1\right)^2+6>0\left(đpcm\right)\\ f,\Delta=4\left(m-1\right)^2-4\left(-3-m\right)=4m^2-8m+4+12+4m\\ \Delta=4m^2-4m+16=\left(2m-1\right)^2+15>0\left(đpcm\right)\)

NV
31 tháng 1 2021

1.

Do 3 nghiệm lập thành cấp số cộng \(\Rightarrow2x_2=x_1+x_3\)

Mà \(x_1+x_2+x_3=3m\)

\(\Rightarrow3x_2=3m\Rightarrow x_2=m\)

Thay lại pt ban đầu:

\(m^3-3m^3+2m\left(m-4\right)m+9m^2-m=0\)

\(\Leftrightarrow m^2-m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)

- Với \(m=0\Rightarrow x^3=0\Rightarrow\) pt có đúng 1 nghiệm (ktm)

- Với \(m=1\Rightarrow x^3-3x^2-6x+8=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=1\\x=4\end{matrix}\right.\) (thỏa mãn)

Vậy \(m=1\)