so sánh các ps sau: A = 10/am + 10/an và B = 11/am + 11/an
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{122}{123}\) và \(\dfrac{10}{11}\)
\(1-\dfrac{122}{123}=\dfrac{1}{123}\)
\(1-\dfrac{10}{11}=\dfrac{1}{11}\)
Vì \(\dfrac{1}{123}< \dfrac{1}{11}\) nên ⇒ \(\dfrac{122}{123}< \dfrac{10}{11}\)
b) \(\dfrac{16}{12}\) và \(\dfrac{99}{100}\)
\(\dfrac{16}{12}>1\) và \(\dfrac{99}{100}< 1\)
⇒ \(\dfrac{16}{12}>\dfrac{99}{100}\)
c) \(\dfrac{35}{70}\) và \(\dfrac{6}{11}\)
\(\dfrac{35}{70}=\dfrac{1}{2}\) = \(\dfrac{6}{12}\)
Vì \(\dfrac{6}{12}< \dfrac{6}{11}\) nên ⇒ \(\dfrac{35}{70}< \dfrac{6}{11}\)
a: 11/10>1>10/11
b: 4/9=44/99
c: 15/25=3/5
12/15=4/5
mà 3/5<4/5
nên 15/25<12/15
a: 11/10>1>10/11
b: 4/9=44/99
c: 15/25=3/5
12/15=4/5
mà 3/5<4/5
nên 15/25<12/15
Ta thấy: \(\frac{11}{10}>1;\frac{10}{11}< 1\)
\(\Rightarrow\frac{11}{10}>\frac{10}{11}\)
Vì KM<KN
nên M nằm giữa K và N
Xét ΔAKM có \(\widehat{AKM}=90^0\)
nên AM là cạnh huyền
=>AM là cạnh lớn nhất trong ΔAKM
=>AM>AK
Xét ΔAMK có \(\widehat{AMN}\) là góc ngoài tại đỉnh M
nên \(\widehat{AMN}=\widehat{MAK}+\widehat{MKA}=90^0+\widehat{MAK}>90^0\)
Xét ΔAMN có \(\widehat{AMN}>90^0\)
nên AN là cạnh lớn nhất trong ΔAMN
=>AN>AM
mà AM>AK
nên AN>AM>AK
Sửa đề: B=11^87+1/11^88+1
\(11A=\dfrac{11^{90}+11}{11^{90}+1}=1+\dfrac{10}{11^{90}+1}\)
\(11B=\dfrac{11^{88}+11}{11^{88}+1}=1+\dfrac{10}{11^{88}+1}\)
mà 11^90>11^88
nên A<B
\(A=\frac{10}{a^m}+\frac{10}{a^n}\)
\(B=\frac{11}{a^m}+\frac{11}{a^n}=\left(\frac{10}{a^m}+\frac{10}{a^n}\right)+\left(\frac{1}{a^m}+\frac{1}{a^n}\right)\)
Vậy A < B
chọn đúng nhé !