tìm m để x=2 là nghiệm của đa thức x mũ 2-2mx+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy A(x) chỉ có 2 nghiệm là 2 và 1
=>2 và 1 cũng là nghiệm của B(x)
<=>B(1)=0 và B(2)=0
<=>2+a+b+4=0 và 16+4a+2b+4=0
<=>a+b=-6 và 2(2a+b)=-20
<=>a+b=-6 và 2a+b=-10
Suy ra:a=-4 và b=-2
Bài 1.
a.\(\left(x-8\right)\left(x^3+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b.\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
\(\Leftrightarrow4x-3-x-5=30-3x\)
\(\Leftrightarrow4x-x+3x=30+5+3\)
\(\Leftrightarrow6x=38\)
\(\Leftrightarrow x=\dfrac{19}{3}\)
Bài 1:
a. $(x-8)(x^3+8)=0$
$\Rightarrow x-8=0$ hoặc $x^3+8=0$
$\Rightarrow x=8$ hoặc $x^3=-8=(-2)^3$
$\Rightarrow x=8$ hoặc $x=-2$
b.
$(4x-3)-(x+5)=3(10-x)$
$4x-3-x-5=30-3x$
$3x-8=30-3x$
$6x=38$
$x=\frac{19}{3}$
a: \(A=\left(\dfrac{2+x}{2-x}-\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{2+x}\right):\dfrac{2\left(x-3\right)}{2-x}\)
\(=\dfrac{4+4x+x^2+4x^2-\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\cdot\dfrac{2-x}{2\left(x-3\right)}\)
\(=\dfrac{5x^2+4x+4-4+4x-x^2}{\left(2+x\right)}\cdot\dfrac{1}{2\left(x-3\right)}\)
\(=\dfrac{4x^2+8x}{x+2}\cdot\dfrac{1}{2\left(x-3\right)}=\dfrac{4x\left(x+2\right)}{2\left(x+2\right)}\cdot\dfrac{1}{x-3}=\dfrac{2x}{x-3}\)
b: |x-2|=2
=>x-2=2 hoặc x-2=-2
=>x=0(nhận) hoặc x=4(nhận)
Khi x=0 thì \(A=\dfrac{2\cdot0}{0-3}=\dfrac{-2}{3}\)
Khi x=4 thì \(A=\dfrac{2\cdot4}{4-3}=8\)
c: A>0
=>x/x-3>0
=>x>3 hoặc x<0
=>x>3
A(x)=(a-2b)x^2-3bx+a-1
Theo đề, ta có: A(x) chia hết cho x-4 và A(1)=0
=>a-2b-3b+a-1=0
=>2a-5b-1=0
=>5b=2a-1
=>b=0,4a-0,2
A(x)=(a-2b)x^2-3bx+a-1
=(a-0,8a+0,4)x^2-3x(0,4a-0,2)+a-1
=(0,2a+0,4)x^2-(1,2a-0,6)x+a-1
A(x) chia hết cho x-4
=>(0,2a+0,4)x^2-x(0,8a+1,6)+x(0,8a+1,6-1,2a+0,6)+a-1 chia hết cho x-4
=>x(-0,4a+2,2)+a-1 chia hết cho x-4
=>x(-0,4a+2,2)-4(-0,4a+2,2)+4(-0,4a+2,2)+a-1 chia hết cho x-4
=>-1,6a+8,8+a-1=0
=>-0,6a+7,8=0
=>a=13
=>b=0,4*13-0,2=5,2-0,2=5
\(x=2\) là nghiệm của đa thức đã cho nên:
\(2^2-2m.2+1=0\)
\(\Leftrightarrow4m=5\Rightarrow m=\dfrac{5}{4}\)
Thay x=2 vào phương trình \(x^2-2mx+1=0\), ta được:
\(2^2-2m\cdot2+1=0\)
\(\Leftrightarrow-4m+5=0\)
\(\Leftrightarrow-4m=-5\)
hay \(m=\dfrac{5}{4}\)
Vậy: Để x=2 là nghiệm của đa thức \(x^2-2mx+1\) thì \(m=\dfrac{5}{4}\)