cho x+y+z=1.Tìm gtnn của biểu thức P=x^2+y^2+z^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT AM-GM:
$x^2+\frac{1}{2x}+\frac{1}{2x}\geq 3\sqrt[3]{\frac{1}{4}}$
Tương tự:
$y^2+\frac{1}{2y}+\frac{1}{2y}\geq 3\sqrt[3]{\frac{1}{4}}$
$z^2+\frac{1}{2z}+\frac{1}{2z}\geq 3\sqrt[3]{\frac{1}{4}}$
Cộng theo vế:
$A\geq 9\sqrt[3]{\frac{1}{4}}$ (đây chính là $A_{\min}$)
Dấu "=" xảy ra khi $x=y=z=\sqrt[3]{\frac{1}{2}}$
1) Áp dụng bđt Cauchy cho 3 số dương ta có
\(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)
\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)
\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)
Cộng (1);(2);(3) theo vế ta được
\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)
\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)
\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)
2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)
Dấu"=" khi a = 4b
nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)
Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
Đặt \(\sqrt{a+b}=t>0\) ta được
\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)
\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)
Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)
nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)
khi đó a + b = 1
mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Cho x,y,z là ba số thực dương thỏa:x+y+z=3 .Tìm GTNN của biểu thức Q=x+1/1+y^2 +y+1/1+z^2 +z+1/1+x^2
Lời giải:
Bạn cần bổ sung điều kiện $x,y,z>0$
\(P=\frac{1}{x.\frac{y^2+z^2}{y^2z^2}}+\frac{1}{y.\frac{z^2+x^2}{z^2x^2}}+\frac{1}{z.\frac{x^2+y^2}{x^2y^2}}=\frac{1}{x(\frac{1}{y^2}+\frac{1}{z^2})}+\frac{1}{y(\frac{1}{z^2}+\frac{1}{x^2})}+\frac{1}{z(\frac{1}{x^2}+\frac{1}{y^2})}\)
\(=\frac{1}{x(3-\frac{1}{x^2})}+\frac{1}{y(3-\frac{1}{y^2})}+\frac{1}{z(3-\frac{1}{z^2})}=\frac{x}{3x^2-1}+\frac{y}{3y^2-1}+\frac{z}{3z^2-1}\)
Vì $\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=3\Rightarrow x^2, y^2, z^2>\frac{1}{3}$
Xét hiệu:
\(\frac{x}{3x^2-1}-\frac{1}{2x^2}=\frac{(x-1)^2(2x+1)}{2x^2(3x^2-1)}\geq 0\) với mọi $x>0$ và $x^2>\frac{1}{3}$
$\Rightarrow \frac{x}{3x^2-1}\geq \frac{1}{2x^2}$
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế ta có:
$P\geq \frac{1}{2}(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2})=\frac{3}{2}$
Vậy $P_{\min}=\frac{3}{2}$ khi $x=y=z=1$
\(B=x^2+y^2+z^2\ge\dfrac{1}{3}\left(x+y+z\right)^2=\dfrac{2019^2}{3}\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{2019}{3}\)
Này Nguyễn Việt Lâm Giáo viên, mk ko hiểu cái dòng đầu bn có thể giải thích rõ ràng đc ko??
Áp dụng BĐT AM - GM ta có :
\(B=x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{2019^2}{3}=1358787\)
Dấu "=" xảy ra :
\(\Leftrightarrow x=y=z=\dfrac{2019}{3}\)
Vậy....
Áp dụng bất đẳng thức Bunhiacopxki, ta có:
\(3\left(x^2+y^2+z^2\right)=\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(1x+1y+1z\right)^2=\left(x+y+z\right)^2=1\)
\(\Rightarrow P\ge\dfrac{1}{3}\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)