Cho hình thang ABCD ( AB//CD ), AB < CD và đường chéo AC vuông hóc với cạnh bên AD, đường cao AH a ) Chứng minh tam giác ADC đôngg dạng tam giác HAC b ) Chứng minh AC.AD = AH. CD c ) Cho biết AB = 14cm ; AC = 16cm và AD 12cm. Tính độ dài các đoạn Hd, HC và diện tích honhf thang ABCD
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
12 tháng 5 2022
a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
góc C chung
Do đo: ΔBDC\(\sim\)ΔHBC
b: \(BD=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(HC=\dfrac{BC^2}{CD}=\dfrac{6^2}{10}=3.6\left(cm\right)\)
HD=10-3,6=6,4(cm)
20 tháng 2 2023
a: Xet ΔABC vuông tại A và ΔHAC vuông tạiH có
góc ACB chung
=>ΔABC đồng dạng với ΔHAC
=>CA/CH=CB/CA
=>CA^2=CH*CB
b: AE/HE=CA/CH
BD/AD=CB/CA
mà CA/CH=CB/CA
nên AE/HE=BD/AD
=>AE*AD=HE*BD
9 tháng 3 2023
a: Xét tứ giác ABDE có
AB//DE
AE//BD
=>ABDE là hình bình hành
b: ABDE là hình bìnhhành
=>AB=DE=7cm
=>CE=7+18=25cm
BD=AE=15cm
Vì AE^2+AC^2=CE^2
nên ΔAEC vuông tại A
c: AH=15*20/25=300/25=12cm
\(S_{ABCD}=\dfrac{1}{2}\cdot12\cdot\left(7+18\right)=25\cdot6=150\left(cm^2\right)\)
a: Xét ΔADC vuông tại A và ΔHAC vuông tại H có
góc ACD chung
=>ΔADC đồng dạng với ΔHAC
b: S ACD=1/2*AC*AD=1/2*AH*CD
=>AC*AD=AH*CD
c: CD=căn 12^2+16^2=20cm
HD=12^2/20=144/20=7,2cm
HC=20-7,2=12,8cm