K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>BA=BE và DA=DE

b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

góc ADF=góc EDC

=>ΔDAF=ΔDEC

=>DF=DC>DE

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)

30 tháng 3 2021

mấy câu còn lại đâu ???

 

30 tháng 3 2021

a) xét tam giác ABD và tam giác EBD vuông tại A, E ( gt, DE⊥BC)

            BD chung

            góc ABD = góc EBD ( BD là tia p/g của góc B)

do đó :  tam giác ABD = tam giác EBD ( cạnh huyền + góc nhọn )

30 tháng 3 2021

mình thắc mắc câu d cơ

1: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

2: Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

Suy ra: AF=EC

Xét ΔBFC có BA/AF=BE/EC

nên AE//FC

8 tháng 3 2023

`a)`

+, `Delta ABC` vuông tại `A(GT)=>hat(A)=90^0`

`DE⊥BC(GT)=>hat(BED)=90^0`

`BD` là p/g của `hat(ABC)(GT)=>hat(B_1)=hat(B_2)`

Xét `Delta ABD` và `Delta EBD` có :

`{:(hat(A)=hat(BED)(=90^0)),(BD-chung),(hat(B_1)=hat(B_2)(cmt)):}}`

`=>Delta ABD=Delta EBD(c.h-g.n)(đpcm)`

+, Có `Delta ABD=Delta EBD(cmt)`

`=>BA=BE` ( 2 cạnh t/ứng ) `(đpcm)`

`b)` 

Có `BA=BE(cmt)`

`=>Delta ABE` cân tại `B`

mà `hat(ABE)=60^0(hat(ABC)=60^0)`

nên `Delta ABC` đều `(đpcm)`

`c)`

Có `Delta ABC` vuông tại `A=>hat(ABC)+hat(C)=90^0`

hay `60^0+hat(C)=90^0`

`=>hat(C)=90^0-60^0=30^0` (1)

`Delta ABE` đều `(cmt)=>hat(A_1)=60^0`

`=>hat(A_2)=30^0` (2)

Từ `(1)` và `(2)=>Delta EAC` cân tại `E`

`=>AE=EC` 

Có `Delta ABE` đều `(cmt)=>AB=AE` 

mà `AE=EC(cmt)`

`{:(nên EC=AB),(mà AB=EB(cmt);AB=5cm):}}`

`=>EC=EB=5cm`

Vậy `BC=EC+EB=5+5=10(cm)`

a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>BA=BE

b: BA=BE và góc ABE=60 độ

=>ΔBAE đều

c: Xét ΔABC vuông tại A có cos B=AB/BC

=>5/BC=1/2

=>CB=10cm

\(\text{#TNam}\)

`a,` Xét Tam giác `ABD` và Tam giác `EBD` có:

`\text {BD chung}`

\(\widehat{ABD}=\widehat{EBD} (\text {tia phân giác}\)\(\widehat{BAE})\)

`=> \text {Tam giác ABD = Tam giác EBD (ch-gn)}`

`b,`

Vì Tam giác `ABD =` Tam giác `EBD (a)`

`-> BA = BE (\text {2 cạnh tương ứng})`

Xét Tam giác `BAC` và Tam giác `BEF` có:

\(\widehat{B}\) \(\text {chung}\)

`BA = BE (CMT)`

\(\widehat{BAC}=\widehat{BEF}=90^0\)

`=> \text {Tam giác BAC = Tam giác BEF (g-c-g)}`

`-> BF = BC (\text {2 cạnh tương ứng})`

Gọi `I` là giao điểm của `BD` và `CF`

Xét Tam giác `BIF` và Tam giác `BIC` có:

`BF = BC (CMT)`

\(\widehat{FBI}=\widehat{CBI} (\text {tia phân giác}\) \(\widehat{FBC})\)

\(\text {BI chung}\)

`=> \text {Tam giác BIF = Tam giác BIC (c-g-c)}`

`->`\(\widehat{BIF}=\widehat{BIC} (\text {2 góc tương ứng})\)

Mà `2` gióc này nằm ở vị trí kề bù 

`->`\(\widehat{BIF}+\widehat{BIC}=180^0\)

`->`\(\widehat{BIF}=\widehat{BIC}=\)`180/2=90^0`

`-> \text {BI} \bot \text {FC}`

`-> \text {BD}` `\bot` `\text {FC (đpcm)}`

loading...

a: XétΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó:ΔBAD=ΔBED

Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

Suy ra: DF=DC

hay ΔDFC cân tại D

b: Ta có: DE=DA

mà DA<DF

nên DE<DF

24 tháng 6 2021

undefined

undefined