chứng minh aaabbb luôn chia hết cho37
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
aaabbb = aaa000 + bbb
= a.111.1000 + b.111
= a.3.37.1000 + b.3.37
= 37.(a.3.1000 + b.3) ⋮ 37
aaabbb = aaa000 + bbb
= a.111.1000 + b.111
= a.3.37.1000 + b.3.37
= 37.(a.3.1000 + b.3) ⋮ 37
aaabbb=aaa×1000+bbb=111×(1000a+b)=3×37×(1000a+b)
Vì 37 chia hết cho 37 nên aaabbb chia hết cho 37
Thanks nha nhưng tôi nghĩ thế này : aaabbb = a.100000 + a.10000 + a.1000 + b.100 + b.10 + b.1
aaabbb = a.( 100000 + 10000 + 1000) + b. ( 100 + 10 + 1 )
aaabbb = a.111000 + b.111
aaabbb = a.3000.37 + b.3.37
Vì 37 chia hết cho 37 nên nhân với số nào cũng chia hết cho 37 suy ra aaabbb chia hết cho 37
100000a+10000a+1000a+100b+10b+b
111000:37
111:37
vậy aaabbb:37
1000aaa+bbb=1000.111a+111b=37.3(1000a+b)
vậy aaabbb chia hết cho 37
ta có : aaabbb=aaa.1000+bbb=a.111.1000+b.111 =(a.1000+b).111 Mà 111chia hết cho 37 =>(a.1000+b).111chia hết cho 37 Vậy aaabbb luôn chia hết cho 37
aaabbb = aaa000 + bbb
= a.111.1000 + b.111
= a.3.37.1000 + b.3.37
= 37.(a.3.1000 + b.3) ⋮ 37
Ta có: \(\overline{aaabbb}=\overline{aaa000}+\overline{bbb}\)
\(=111a.1000+111b\)
\(=3a.37.1000+3b.37\)
\(=37\left(3a.1000+3b\right)\) chia hết cho 37
Vậy \(\overline{aaabbb}\) chia hết cho 37.
b) ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)
ta có : aaabbb = aaa . 1000 + bbb
= a .111000 + b . 111
= a . 37 . 3 . 1000 + b . 37 . 3
Vì 2 số hạng của tổng đều chia hết cho 37
\(\Rightarrow\)a . 37 . 3 . 1000 + b . 37 . 3 chia hết cho 37
hay aaabbb chia hết cho 37
Vậy aaabbb chia hết cho 37