K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2022

\(f( x;y) = ax + 2x + ay + 2y + 4 = a^2\)

=> \(( a + 2 )( x + y ) = a^2 -4\)

=> \(( a + 2 )( x + y ) = ( a-2 )( a + 2 )\)

=> \(( a + 2 )( x + y ) - ( a-2 )( a + 2 )=0\)

=> \(( a + 2 )[ x + y - ( a-2 )] = 0\)

=> \(\left[\begin{matrix} x+y - ( a-2 )=0\\ a+2=0\end{matrix}\right.\)

=> \(\left[\begin{matrix} x+y = ( a-2 )\\ a=-2\end{matrix}\right.\)

Như vậy , nếu \(x+y=a-2\) thì \(f( x;y) = ax + 2x + ay + 2y + 4 = a^2\)

 

Bài 1:

a) \(f\left(x\right)=2x\left(x^2-3\right)-4\left(1-2x\right)+x^2\left(x-1\right)+\left(5x+3\right)\)

\(=2x^3-6x-4+8x+x^3-x^2+5x+3\)

\(=x^3-x^2+7x-1\)

\(g\left(x\right)=-3\left(1-x^2\right)-2\left(x^2-2x+1\right)\)

\(=-3+3x^2-2x^2+4x-2\)

\(=x^2+4x-5\)

b) \(h\left(x\right)=f\left(x\right)-g\left(x\right)\)

\(=x^3-x^2+7x-1-x^2-4x+5\)

\(=x^3-2x^2+3x-4\)

11 tháng 8 2018

Cảm ơn ạ

15 tháng 5 2015

\(A=2x^4+4x^3y-x^3y-4x^3+x^2y^2-2x^2y-2x+2x+3\)

\(A=2.\left(x^4+2x^3y+x^2y^2\right)-x^2y^2-x^3y-4x^3-2x^2y+3\)

\(A=2.\left(x^2+xy\right)^2-\left(x^2y^2+x^3y\right)-\left(4x^3+2x^2y\right)+3\)

\(A=2.x^2.\left(x+y\right)^2-x^2y\left(y+x\right)-2x^2\left(2x+y\right)+3\)

\(A=8.x^2-2.x^2y-2x^2\left(x+2\right)+3=8x^2-2x^2\left(2-x\right)-2x^3-4x^2+3\)

\(A=8x^2-4x^2 +2x^3-2x^3-4x^2+3=3\)là hằng số

=> ĐPCM

 

 

 

NV
25 tháng 2 2021

Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)

TH1: \(a;c\) trái dấu 

Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)

Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)

Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.

Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)

\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)

Mà a; c trái dấu nên:

- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)

\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)

\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu

\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)

Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)

22 tháng 12 2022

Bài 1:

\(\left\{{}\begin{matrix}xy+2=2x+y\left(1\right)\\2xy+y^2+3y=6\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Rightarrow xy-y+2-2x=0\)

\(\Rightarrow y\left(x-1\right)-2\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(y-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Với \(x=1\). Thay vào (2) ta được:

\(2y+y^2+3y=6\)

\(\Leftrightarrow y^2+5y-6=0\)

\(\Leftrightarrow y^2+y-6y-6=0\)

\(\Leftrightarrow y\left(y+1\right)-6\left(y+1\right)=0\)

\(\Leftrightarrow\left(y+1\right)\left(y-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=6\end{matrix}\right.\)

Với \(y=2\). Thay vào (2) ta được:

\(2x.2+2^2+3.2=6\)

\(\Leftrightarrow4x+4+6=6\)

\(\Leftrightarrow x=-1\)

Vậy hệ phương trình đã cho có nghiệm (x,y) \(\in\left\{\left(1;-1\right),\left(1;6\right),\left(-1;2\right)\right\}\)

22 tháng 12 2022

Bài 2:

\(f\left(x\right)=x^4+6x^3+11x^2+6x\)

\(=x\left(x^3+6x^2+11x+6\right)\)

\(=x\left(x^3+x^2+5x^2+5x+6x+6\right)\)

\(=x\left[x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\right]\)

\(=x\left(x+1\right)\left(x^2+5x+6\right)\)

\(=x\left(x+1\right)\left(x^2+3x+2x+6\right)\)

\(=x\left(x+1\right)\left[x\left(x+3\right)+2\left(x+3\right)\right]\)

\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

b) Ta có: \(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

\(=x\left(x+3\right).\left(x+1\right)\left(x+2\right)+1\)

\(=\left(x^2+3x\right).\left(x^2+3x+2\right)+1\)

\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)

\(=\left(x^2+3x+1\right)^2\)

Vì x là số nguyên nên \(f\left(x\right)+1\) là số chính phương.

2 tháng 10 2023

Bài \(3\)

\(A=\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)

\(=2x^2+3x-10x-15-\left(2x^2-6x\right)+x+7\)

\(=2x^2+3x-10x-15-2x^2+6x+x+7\)

\(=\left(2x^2-2x^2\right)+\left(3x-10x+6x+x\right)+\left(-15+7\right)\)

\(=-8\)

Vậy biểu thức không phụ thuộc vào biến

\(B=4\left(y-6\right)-y^2\left(2+3y\right)+y\left(5y-4\right)+3y^2\)

Đề như này à?

Bài \(4\)

\(a,4a^2-16b^2=4\left(a^2-4b^2\right)=4\left(a-2b\right)\left(a+2b\right)\)

\(b,4x^2-4x+1=\left(2x\right)^2-2.2x.1+1^2=\left(2x+1\right)^2\)

\(c,\) ?

\(d,\left(x-y\right)^2-\left(2x-y\right)^2\\ =\left[\left(x-y\right)-\left(2x-y\right)\right]\left[\left(x-y\right)+\left(2x-y\right)\right]\\ =\left(x-y-2x+y\right)\left(x-y+2x-y\right)\\ =\left(-x\right)\left(3x-2y\right)\)

\(e,8x^3-y^3=\left(2x\right)^3-y^3\\ =\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(i,3x+6y+\left(x+2y\right)\\ =3\left(x+2y\right)+\left(x+2y\right)\\ =4\left(x+2y\right)\)

\(j,ax-ay-x+y=\left(ãx-ay\right)-\left(x-y\right)\\ =a\left(x-y\right)-\left(x-y\right)=\left(x-y\right)\left(a-1\right)\)

`k,` `y` hay `y^2` ạ? vì nó mới phân tích được nhân tử.

 

 

 

2 tháng 10 2023

-y nha bạn

1 tháng 7 2015

 

\(ax+2x+ay+2y+4=x\left(a+2\right)+y\left(a+2\right)+4=\left(a+2\right)\left(x+y\right)+4=\left(a+2\right)\left(a-2\right)+4=a^2-4+4=a^2\)

từ a-2=x+y => y=a-2-x

\(ax+2x+ay+2y+4\)

\(\Leftrightarrow x\left(a+2\right)+y\left(a+2\right)+4\)

\(=\left(x+y\right)\left(a+2\right)+4\)

\(=a^2-4+4=a^2\)