Chứng minh rằng nếu x+y = a-2 thì đa thức
\(f\left(x,y\right)=ax+2x+ay+2y+4=a^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(f\left(x\right)=2x\left(x^2-3\right)-4\left(1-2x\right)+x^2\left(x-1\right)+\left(5x+3\right)\)
\(=2x^3-6x-4+8x+x^3-x^2+5x+3\)
\(=x^3-x^2+7x-1\)
\(g\left(x\right)=-3\left(1-x^2\right)-2\left(x^2-2x+1\right)\)
\(=-3+3x^2-2x^2+4x-2\)
\(=x^2+4x-5\)
b) \(h\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(=x^3-x^2+7x-1-x^2-4x+5\)
\(=x^3-2x^2+3x-4\)
\(A=2x^4+4x^3y-x^3y-4x^3+x^2y^2-2x^2y-2x+2x+3\)
\(A=2.\left(x^4+2x^3y+x^2y^2\right)-x^2y^2-x^3y-4x^3-2x^2y+3\)
\(A=2.\left(x^2+xy\right)^2-\left(x^2y^2+x^3y\right)-\left(4x^3+2x^2y\right)+3\)
\(A=2.x^2.\left(x+y\right)^2-x^2y\left(y+x\right)-2x^2\left(2x+y\right)+3\)
\(A=8.x^2-2.x^2y-2x^2\left(x+2\right)+3=8x^2-2x^2\left(2-x\right)-2x^3-4x^2+3\)
\(A=8x^2-4x^2 +2x^3-2x^3-4x^2+3=3\)là hằng số
=> ĐPCM
Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)
TH1: \(a;c\) trái dấu
Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)
Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)
Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.
Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)
\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)
Mà a; c trái dấu nên:
- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)
\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)
\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu
\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)
Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)
Bài 1:
\(\left\{{}\begin{matrix}xy+2=2x+y\left(1\right)\\2xy+y^2+3y=6\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Rightarrow xy-y+2-2x=0\)
\(\Rightarrow y\left(x-1\right)-2\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(y-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Với \(x=1\). Thay vào (2) ta được:
\(2y+y^2+3y=6\)
\(\Leftrightarrow y^2+5y-6=0\)
\(\Leftrightarrow y^2+y-6y-6=0\)
\(\Leftrightarrow y\left(y+1\right)-6\left(y+1\right)=0\)
\(\Leftrightarrow\left(y+1\right)\left(y-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=6\end{matrix}\right.\)
Với \(y=2\). Thay vào (2) ta được:
\(2x.2+2^2+3.2=6\)
\(\Leftrightarrow4x+4+6=6\)
\(\Leftrightarrow x=-1\)
Vậy hệ phương trình đã cho có nghiệm (x,y) \(\in\left\{\left(1;-1\right),\left(1;6\right),\left(-1;2\right)\right\}\)
Bài 2:
\(f\left(x\right)=x^4+6x^3+11x^2+6x\)
\(=x\left(x^3+6x^2+11x+6\right)\)
\(=x\left(x^3+x^2+5x^2+5x+6x+6\right)\)
\(=x\left[x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\right]\)
\(=x\left(x+1\right)\left(x^2+5x+6\right)\)
\(=x\left(x+1\right)\left(x^2+3x+2x+6\right)\)
\(=x\left(x+1\right)\left[x\left(x+3\right)+2\left(x+3\right)\right]\)
\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b) Ta có: \(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=x\left(x+3\right).\left(x+1\right)\left(x+2\right)+1\)
\(=\left(x^2+3x\right).\left(x^2+3x+2\right)+1\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
Vì x là số nguyên nên \(f\left(x\right)+1\) là số chính phương.
Bài \(3\)
\(A=\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)
\(=2x^2+3x-10x-15-\left(2x^2-6x\right)+x+7\)
\(=2x^2+3x-10x-15-2x^2+6x+x+7\)
\(=\left(2x^2-2x^2\right)+\left(3x-10x+6x+x\right)+\left(-15+7\right)\)
\(=-8\)
Vậy biểu thức không phụ thuộc vào biến
\(B=4\left(y-6\right)-y^2\left(2+3y\right)+y\left(5y-4\right)+3y^2\)
Đề như này à?
Bài \(4\)
\(a,4a^2-16b^2=4\left(a^2-4b^2\right)=4\left(a-2b\right)\left(a+2b\right)\)
\(b,4x^2-4x+1=\left(2x\right)^2-2.2x.1+1^2=\left(2x+1\right)^2\)
\(c,\) ?
\(d,\left(x-y\right)^2-\left(2x-y\right)^2\\ =\left[\left(x-y\right)-\left(2x-y\right)\right]\left[\left(x-y\right)+\left(2x-y\right)\right]\\ =\left(x-y-2x+y\right)\left(x-y+2x-y\right)\\ =\left(-x\right)\left(3x-2y\right)\)
\(e,8x^3-y^3=\left(2x\right)^3-y^3\\ =\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(i,3x+6y+\left(x+2y\right)\\ =3\left(x+2y\right)+\left(x+2y\right)\\ =4\left(x+2y\right)\)
\(j,ax-ay-x+y=\left(ãx-ay\right)-\left(x-y\right)\\ =a\left(x-y\right)-\left(x-y\right)=\left(x-y\right)\left(a-1\right)\)
`k,` `y` hay `y^2` ạ? vì nó mới phân tích được nhân tử.
\(ax+2x+ay+2y+4=x\left(a+2\right)+y\left(a+2\right)+4=\left(a+2\right)\left(x+y\right)+4=\left(a+2\right)\left(a-2\right)+4=a^2-4+4=a^2\)
từ a-2=x+y => y=a-2-x
\(ax+2x+ay+2y+4\)
\(\Leftrightarrow x\left(a+2\right)+y\left(a+2\right)+4\)
\(=\left(x+y\right)\left(a+2\right)+4\)
\(=a^2-4+4=a^2\)
\(f( x;y) = ax + 2x + ay + 2y + 4 = a^2\)
=> \(( a + 2 )( x + y ) = a^2 -4\)
=> \(( a + 2 )( x + y ) = ( a-2 )( a + 2 )\)
=> \(( a + 2 )( x + y ) - ( a-2 )( a + 2 )=0\)
=> \(( a + 2 )[ x + y - ( a-2 )] = 0\)
=> \(\left[\begin{matrix} x+y - ( a-2 )=0\\ a+2=0\end{matrix}\right.\)
=> \(\left[\begin{matrix} x+y = ( a-2 )\\ a=-2\end{matrix}\right.\)
Như vậy , nếu \(x+y=a-2\) thì \(f( x;y) = ax + 2x + ay + 2y + 4 = a^2\)