K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

chiu

tk nhe

xin do

bye

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

Cách 1:

Ta có:

\(A=n^4-6n^3+27n^2-54n+32=(n^4-n^3)-5n^3+5n^2+22n^2-22n-32n+32\)

\(=n^3(n-1)-5n^2(n-1)+22n(n-1)-32(n-1)\)

\(=(n-1)(n^3-5n^2+22n-32)\)

\(=(n-1)(n^3-2n^2-3n^2+6n+16n-32)\)

\(=(n-1)[n^2(n-2)-3n(n-2)+16(n-2)]\)

\(=(n-1)(n-2)(n^2-3n+16)\)

Ta thấy $(n-1)(n-2)$ là tích 2 số nguyên liên tiếp nên \((n-1)(n-2)\vdots 2\)

\(\Rightarrow A=(n-1)(n-2)(n^2-3n+16)\vdots 2\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

Cách 2:

\(A=n^4-6n^3+27n^2-54n+32\)

\(=(n^4+27n^2)-(6n^3+54n-32)\)

\(=n^2(n^2+27)-2(3n^3+27n-16)\)

Ta thấy \(n^2+27-n^2=27\) lẻ nên $n^2, n^2+27$ khác tính chẵn lẻ

Do đó trong 2 số $n^2$ và $n^2+27$ có 1 số chẵn, 1 số lẻ

\(\Rightarrow n^2(n^2+27)\vdots 2\)

\(2(3n^3+27n-16)\vdots 2\)

Suy ra \(A=n^2(n^2+27)-2(3n^3+27n-16)\vdots 2\)

Ta có đpcm.

14 tháng 10 2018

\(A=n^4-6n^3+27n^2-54n+32\)

\(=\left(n^4-3n^3+16n^2\right)-\left(3n^3-9n^2+48n\right)+\left(2n^2-6n+32\right)\)

\(=n^2\left(n^2-3n+16\right)-3n\left(n^2-3n+16\right)+2\left(n^2-3n+16\right)\)

\(=\left(n^2-3n+2\right)\left(n^2-3n+16\right)\)

\(=\left(n-2\right)\left(n-1\right)\left(n^2-3n+16\right)\)

Nhận thấy:  \(\left(n-2\right)\left(n-1\right)\)là tích 2 số nguyên liên tiếp    \(\left(n\in Z\right)\)

=>  \( \left(n-2\right)\left(n-1\right)\)\(⋮\)\(2\)

=>  A chia hết cho 2

14 tháng 11 2022

\(n^4-6n^3+27n^2-54n+32\)

\(=n^4-n^3-5n^3+5n^2+22n^2-22n+32n-32\)

\(=\left(n-1\right)\left(n^3-5n^2+22n+32\right)\)

\(=\left(n-1\right)\left(n^3-2n^2-3n^2+6n+16n+32\right)\)
\(=\left(n-1\right)\left(n-2\right)\left(n^2-3n+16\right)\) chia hếtcho 2

19 tháng 6 2017

Ta có với n chẵn thì giá trị biểu thức trên luôn chẵn

Xét trường hợp n lẻ:

=> n4 lẻ, 6n3 chẵn, 27n2 lẻ, 54n chẵn, 32 chẵn

=> n4 + 6n3 + 272 + 54 + 32 là số chẵn

Vậy, giá trị biểu thức đã cho luôn chẵn với n thuộc Z

19 tháng 6 2017

còn cách nào khác không nhỉ?

Bài 1:

\(M=x^4-x^3-x^3+x^2+2x^2-2x+2\)

\(=x^2\left(x^2-x\right)-x\left(x^2-x\right)+2\left(x^2-x\right)+2\)

\(=3x^2-3x+6+2\)

\(=3x^2-3x+8\)

\(=3\left(x^2-x\right)+8=3\cdot3+8=17\)