cho tam giác MNP có 3 góc nhọn nội tiếp đường tròn (O,R) có 2 đường cao NH và PK của tam giác MNP (H∈ MP, K∈ MN )
a) c/m tứ giác NKHP nội tiếp
b) c/m KH ⊥ OM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác MKHQ có
\(\widehat{MKH}+\widehat{MQH}=180^0\)
Do đó: MKHQ là tứ giác nội tiếp
c: Xét tứ giác NQKP có
\(\widehat{NKP}=\widehat{NQP}=90^0\)
Do đó: NQKP là tứ giác nội tiếp
Theo định lí Pytago tam giác MNP vuông tại M
\(NP=\sqrt{MN^2+MP^2}=30cm\)
=> ON = R = NP/2 = 15 cm
SMNP = 1/2 . MN . NP = 216 cm2
Nửa chu vi là \(\dfrac{MN+MP+NP}{2}=36\)cm
Áp dụng công thức : \(S=pr\Rightarrow r=\dfrac{S}{p}=\dfrac{216}{36}=6cm\)
Khi đó r + R = 6 + 15 = 21 cm
Xét $\Delta MNH$ và $\Delta P$ ta có:
$\large \widehat{MHN}=\widehat{MPT}=90^o$
$\large \widehat{MNP}=\widehat{MTP}$(Hai góc cùng chắn cung $MP$)
Do đó $\large \Delta MNH \sim \Delta MTP$ $(g-g)$
Từ đó: $\frac{MN}{MT}=\frac{MH}{MP}\Leftrightarrow MN.MP=MH.MT$
Xét tứ giác $NQKP$ ta có:
$\large \widehat{NQP}=\widehat{PKN}=90^o$
Mà hai góc này cùng chắn cung $NP$
Do đó tứ giác $NQKP$ là tứ giác nội tiếp
Suy ra: $\large \widehat{PKQ}+\widehat{PNQ}=180^o$ (Hai góc nội tiếp đối nhau)
Đồng thời ta có $\large \widehat{PKQ}+\widehat{MKQ}=180^o\Rightarrow \widehat{MNP}=\widehat{MTP}=\widehat{MKQ}$
Gọi $A$ là giao điểm của $QK$ và $MT$
Xét tứ giác $TPKA$ ta có:
$\large \widehat{MTP}+\widehat{PKQ}=\widehat{PKQ}+\widehat{MKQ}=180^o$
Mà hai góc này ở vị trí đối nhau nên tứ giác $TPAK$ là tứ giác nội tiếp
$\large \Leftrightarrow \widehat{MPT}+\widehat{TAK}=180^o\Leftrightarrow \widehat{TAK}=180^o-\widehat{MPT}=90^o$
Do đó $MT$ vuông góc với $QK$
Hình:
Dạ bài anh có nhầm lẫn gì kh ạ chứ khúc đầu e thấy hơi sai sai 😅😅