K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác AFMO có 

\(\widehat{FAO}\) và \(\widehat{FMO}\) là hai góc đối

\(\widehat{FAO}+\widehat{FMO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AFMO là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

8 tháng 3 2021

giúp em câu b với c 

10 tháng 3 2021

b, ta có: \(MN\perp AO\Leftrightarrow\stackrel\frown{AM}=\stackrel\frown{AN}\Leftrightarrow\widehat{ANM}=\widehat{AMN^{\left(1\right)}}\)

\(\widehat{FMA}=\widehat{ANM}\left(=\dfrac{1}{2}sđ\stackrel\frown{AM}\right)^{\left(2\right)}\)

Từ \(\left(1\right)va\left(2\right)\) ta có \(\widehat{FMA}=\widehat{AMN}\)

Suy ra MA là tia phân giác của góc FMN

10 tháng 3 2021

có thể giúp mk vẽ hình xíu ko, mk bí quá

11 tháng 2 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

d) Ta có: CA ⊥ OA (CA là tiếp tuyến của (O)

và ON ⊥ OA (gt)

⇒ CA // ON ⇒ ∠(CON) = ∠(ACO) (sole trong)

Mà ∠(ACO) = ∠(BCO) (ΔOAC = ΔOBC)

⇒ ∠(CON) = ∠(BCO) ⇒ ΔNCO cân tại N

Xét tam giác CAO vuông tại A có ∠(AOC) = 60o( ΔAMO đều) nên:

Đề kiểm tra Toán 9 | Đề thi Toán 9

⇒ M là trung điểm của OC

ΔNCO cân tại N có NM là trung tuyến ⇒ NM cũng là đường cao

Hay NM là tiếp tuyến của (O)