K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2022

      `x - ( 2x - 1 ) <= 3x - 3`

`<=> x - 2x + 1 <= 3x - 3`

`<=> 3x - x + 2x >= 1 + 3`

`<=> 4x >= 4`

`<=> x >= 1`

Vậy `S = { x | x >= 1 }`

2 tháng 5 2022

\(\Leftrightarrow x-2x+1\le3x-3\)

\(\Leftrightarrow-4x\le-4\)

\(\Leftrightarrow x\ge1\)

NV
16 tháng 3 2022

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2x-3\ge0\\2x^2-3x+1\ge0\\x^2+2x-3\le2x^2-3x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x\le-3\end{matrix}\right.\\\left[{}\begin{matrix}x\ge1\\x\le\dfrac{1}{2}\end{matrix}\right.\\x^2-5x+4\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x\le-3\end{matrix}\right.\\\left[{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x\le-3\\x\ge4\end{matrix}\right.\)

5 tháng 4 2022

a) \(\dfrac{2-x}{3}-x-2\le\dfrac{x-17}{2}\) \(\Leftrightarrow\) \(6\left(\dfrac{2-x}{3}-x-2\right)\le6\left(\dfrac{x-17}{2}\right)\) \(\Leftrightarrow\) 4-2x-6x-12\(\le\)3x-51 \(\Leftrightarrow\) -2x-6x-3x\(\le\)-51-4+12 \(\Leftrightarrow\) -11x\(\le\)-43 \(\Rightarrow\) x\(\ge\)43/11.

b) \(\dfrac{2x+1}{3}-\dfrac{x-4}{4}\le\dfrac{3x+1}{6}-\dfrac{x-4}{12}\) \(\Leftrightarrow\) \(12\left(\dfrac{2x+1}{3}+\dfrac{4-x}{4}\right)\le12\left(\dfrac{3x+1}{6}+\dfrac{4-x}{12}\right)\) \(\Leftrightarrow\) 8x+4+12-3x\(\le\)6x+2+4-x \(\Leftrightarrow\) 8x-3x-6x+x\(\le\)2+4-4-12 \(\Leftrightarrow\) 0x\(\le\)-10 (vô lí).

5 tháng 4 2022

a) \(\dfrac{2-x}{3}-x-2\le\dfrac{x-17}{2}\)

\(\Leftrightarrow2\left(2-x\right)-6\left(x+2\right)\le3\left(x-17\right)\)

\(\Leftrightarrow4-2x-6x-12\le3x-51\)

\(\Leftrightarrow-11x\le-43\)

\(\Leftrightarrow x\ge\dfrac{43}{11}\)

Vậy S = {\(x\) | \(x\ge\dfrac{43}{11}\) }

b) \(\dfrac{2x+1}{3}-\dfrac{x-4}{4}\le\dfrac{3x+1}{6}-\dfrac{x-4}{12}\)

\(\Leftrightarrow4\left(2x+1\right)-3\left(x-4\right)\le2\left(3x+1\right)-\left(x-4\right)\)

\(\Leftrightarrow8x+4-3x+12\le6x+2-x+4\)

\(\Leftrightarrow0x\le-10\) (vô lý)

Vậy \(S=\varnothing\)

27 tháng 1 2022

sửa đề : 

\(x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\Leftrightarrow x=1\)

17 tháng 5 2021

1. \(\left|\frac{2x^2-x}{3x-4}\right|\ge1\) Điều kiện: \(x\ne\frac{4}{3}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{2x^2-x}{3x-4}\ge1\\\frac{2x^2-x}{3x-4}\le-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{x^2-2x+2}{3x-4}\ge0\\\frac{x^2+x-2}{3x-4}\le0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x>\frac{4}{3}\\x\in(-\infty;-2]U[1;\frac{4}{3})\end{cases}}\Leftrightarrow x\in(-\infty;-2]U[1;+\infty)\backslash\left\{\frac{4}{3}\right\}\)

2.\(\hept{\begin{cases}x^2\le-2x+3\left(1\right)\\\left(m+1\right)x\ge2m-1\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow x^2+2x-3\le0\Leftrightarrow-3\le x\le1\)

+) Nếu \(m=-1\) thì (2) vô nghiệm, suy ra \(m\ne-1\)

+) Nếu \(m>-1\) thì \(\left(2\right)\Leftrightarrow x\ge\frac{2m-1}{m+1}\)

Hệ BPT có nghiệm duy nhất \(\Leftrightarrow\frac{2m-1}{m+1}=1\Leftrightarrow m=2>-1\)

+) Nếu \(m< -1\)thì \(\left(2\right)\Leftrightarrow x\le\frac{2m-1}{m+1}\)

Hệ BPT có nghiệm duy nhất \(\Leftrightarrow\frac{2m-1}{m+1}=-3\Leftrightarrow m=-\frac{2}{5}< -1\)

Vậy \(m=\left\{\frac{-2}{5};2\right\}\)

19 tháng 5 2021

1. |2x2−x3x−4 |≥1 Điều kiện: x≠43 

⇔[

2x2−x3x−4 ≥1
2x2−x3x−4 ≤−1

⇔[

x2−2x+23x−4 ≥0
x2+x−23x−4 ≤0

⇔[

x>43 
x∈(−∞;−2]U[1;43 )

⇔x∈(−∞;−2]U[1;+∞)\{43 }

2.{

x2≤−2x+3(1)
(m+1)x≥2m−1(2)

(1)⇔x2+2x−3≤0⇔−3≤x≤1

29 tháng 7 2019

Mình giải thử thôi nha

\(\frac{\left(2x-1\right)^2}{2}-\frac{\left(1-3x\right)^2}{3}\le x\left(2-x\right)\)

\(\Leftrightarrow3\left(2x-1\right)^2-2\left(1-3x\right)^2\le6x\left(2-x\right)\)

\(\Leftrightarrow12x^2-12x+3-2+12x-18x^2\le12x-6x^2\)

\(\Leftrightarrow-6x^2+1\le12x-6x^2\)

\(\Leftrightarrow1\le12x\)

\(\Leftrightarrow\frac{1}{12}\le x\)

\(\Rightarrow x\ge\frac{1}{12}\)

26 tháng 4 2021

   404 ERROR

AH SHIT

26 tháng 4 2021

damnnnn this sus

28 tháng 2 2020

x(x2+6x+9) - 3x= x3+6x2+12x+8+1

\(\Leftrightarrow\)x3+6x2+9x-3x=x3+6x2+12x+9

\(\Leftrightarrow\)6x=12x+9

\(\Leftrightarrow\)6x=-9

\(\Leftrightarrow\)x=-3/2

Vậy phương trình có 1 nghiệm duy nhất x=-3/2

28 tháng 2 2020

x(x + 3)^2  - 3x = (x + 2)^3 + 1

<=> x(x^2 + 6x + 9) = x^3 + 6x^2 + 12x + 8 + 1

<=> x^3 + 6x^2 + 9x = x^3 + 6x^2 + 12x + 9

<=> 3x + 9 = 0

<=> 3x = -9

<=> x = -3

9 tháng 5 2016

Từ bất phương trình ban đầu : \(\Leftrightarrow\left(\frac{1}{2}\right)^{2x^2+1}\le\left(\frac{1}{8}\right)^{3x+2}=\left(\frac{1}{2}\right)^{9x+6}\)

                                             \(\Leftrightarrow2x^2+1\ge9x+6\)

                                             \(\Leftrightarrow2x^2-9x-5\ge0\)

                                             \(\Leftrightarrow x\in\) (\(-\infty;-\frac{1}{2}\)\(\cup\) [\(5;+\infty\) )

12 tháng 1 2016

\(\frac{-3x+1}{2x+1}+2\le0\)

\(\frac{-3x+1+4x+2}{2x+1}\le0\)

\(\frac{x+3}{2x+1}\le0\)

Lập bảng xet dấu, chú ý các mốc x = -3, x = -1/2

-3 -1/2 x+3 2x+1 x+3 2x+1 0 0 + + - + - - 0 + - +

Nghiệm bpt là \(-3\le x<-\frac{1}{2}\)