K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2017

Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số

Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số 

22 tháng 1 2017

giải zõ hộ

DD
26 tháng 8 2021

\(x^2-2y^2-xy+2x-y-2=0\)

\(\Leftrightarrow x^2+xy+x-2xy-2y^2-2y+x+y+1=3\)

\(\Leftrightarrow\left(x+y+1\right)\left(x-2y+1\right)=3\)

Mà \(x,y\)nguyên nên \(x+y+1,x-2y+1\)là các ước của \(3\).

Ta có bảng giá trị: 

x+y+1-3-113
x-2y+1-1-331
x-10/3 (l)-8/3 (l)2/3 (l)4/3 (l)
y    

Vậy phương trình đã cho không có nghiệm nguyên. 

24 tháng 8 2017

>>>>x^2-(2y^2+1-y)x+2y^2-y-1=0

>>>>delta=(2y^2+1-y)^2-4(2y^2-y-1) (tự tính nha bn)

có kq>>>để pt có no nguyên>>>>delta là sôc chính phương>>>xong

17 tháng 9 2016

xy+3x-2y-7=0

 =>(xy-2y)+3x-7=0

=>y(x-2)+3x-6=-1

=>y(x-2)+3(x-2)=-1

=>(y+3)(x-2)=-1

=>y+3 và x-2 thuộc Ư(1)={1;-1}

Xét y+3=1 =>y=2 <=>x-2=-1 =>x=1

Xét y+3=-1 =>y=-4 <=>x-2=1 =>x=3

22 tháng 10 2019

Ta có: x2y + xy - 2x2 - 3x + 4 = 0

=> x2(y - 2) + x(y - 2) - (x + 1) = -5

=> (x2 + x)(y - 2) - (x + 1) = -5

=> x(x + 1)(y - 2) - (x + 1) = -5

=> (x - 1)[x(y - 2) - 1] = -5

=>  x - 1; x(y - 2) - 1 \(\in\)Ư(-5) = {1; -1; 5; -5}

Với : x - 1 = 1           => x = 2

      x(y - 2)  - 1 = -5 => x(y - 2) = -4   => y - 2 = -2      => y = 0

x - 1 = -1                => x = 0

x(y - 2) - 1 = 5  => x(y - 2) = 6       (ktm vì x = 0)

x - 1 = 5                => x = 6

x(y - 2) - 1 = -1      => x(y - 2) = 0                 => y - 2 = 0          => y = 2

x - 1 = -5              => x = -4

x(y - 2) - 1 = 1    => x(y - 2) = 2              => y - 2 = -1/2             => y = 3/2

Vậy ...

\(\left(3x+2y\right)\left(2x-y\right)^2=7\left(x+y\right)-2\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-7\left(x+y\right)+2=0\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-7x-7y+2=0\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-\left(9x+6x\right)+\left(2x-y\right)+2=0\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-3\left(3x+2y\right)+\left(2x-y\right)+2=0\)

Đặt \(3x+2y\) = a ,đặt \(2x-y\) = b, ta có:

\(ab^2-3a+b+2=0\)

\(\Leftrightarrow a\left(b^2-3\right)=-2-b\)

\(\Leftrightarrow a=\dfrac{-2-b}{b^2-3}\)

\(\Leftrightarrow a=\dfrac{b+2}{3-b^2}\\ \Leftrightarrow a\left(2-b\right)=\dfrac{4-b^2}{3-b^2}\)

\(\Leftrightarrow a\left(2-b\right)=\dfrac{3-b^2+1}{3-b^2}\\ \Leftrightarrow a\left(2-b\right)=1+\dfrac{1}{3-b^2}\\ \Leftrightarrow1⋮3-b^2\\ \Leftrightarrow b^2-3\in\left\{1;-1\right\}\\ \Leftrightarrow b^2\in\left\{4;2\right\}\\ \)

mà 2 không chính phương

\(\Rightarrow b\in\left\{2;-2\right\}\Rightarrow a=0\)

đến đây bạn tự giải tiếp