cho G(x) = ax ^2 -5x +6 tìm a để G(x) nhận x=-2 làm nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(f\left(x\right)=8x^2-6x-2=0\)
\(\Leftrightarrow8x^2-8x+2x-2=0\)
\(\Leftrightarrow8x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(8x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}8x+2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{4}\\x=1\end{cases}}\)
Vậy \(x\in\left\{\frac{-1}{4};1\right\}\)
b) \(g\left(x\right)=5x^2-6x+1=0\)
\(\Leftrightarrow5x^2-5x-x+1=0\)
\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=1\end{cases}}\)
Vậy \(x\in\left\{\frac{1}{5};1\right\}\)
Bài 2:
a) Ta có: x=1là nghiệm của đa thức trên => a*1^2 + 2*1 -1=a+2-1=0
=>a=-1
c)Ta có :x=1 là nghiệm của đa thức trên=>1^2 +a*1 -3=1+a-3=0
=>a=2
b) Ta có : x=1 là nghiệm của đa thức trên=>1^2 +2*1-a=1-2-a=0
=>a=-1
Bài 1:
* \(f\left(x\right)=2xa^2+2ax+4\)
\(\Rightarrow f\left(1\right)=2.1.a^2+2a.1+4=4\)
\(\Rightarrow2a^2+2a+4=4\)
\(\Rightarrow2a^2+2a=0\)
\(\Rightarrow2a\left(a+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2a=0\\a+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=0\\a=-1\end{matrix}\right.\)
* \(g\left(x\right)=x^2-5x-b\)
\(\Rightarrow g\left(5\right)=5^2-5.5-b=5\)
\(\Rightarrow-b=5\)
\(\Rightarrow b=-5\)
\(a.\)Ta có:
\(f\left(x\right)=2x^2-3x-\left(5x^2+4x\right)+4x\left(x+1\right)+1\)
\(=2x^2-3x-5x^2-4x+4x^2+4x+1\)
\(=x^2-3x+1\)
\(b.\)Tại \(x=-1\)thì \(g\left(x\right)=0\)nên:
\(g\left(-1\right)=0\)\(\Leftrightarrow a\left(-1\right)^2+b\left(-1\right)-2=0\)
\(\Leftrightarrow a.1+\left(-b\right)=0+2\)
\(\Leftrightarrow a-b=2\) \(\left(1\right)\)
Tại: \(x=2\)thì \(g\left(2\right)=0\)nên:
\(g\left(2\right)=0\)\(\Leftrightarrow a.2^2+b.2-2=0\)
\(\Leftrightarrow4a+2b=2\) \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)ta tìm được \(a=1\)và \(b=-1\)
Lỡ nhấn nút gửi, làm tiếp nhé:
\(c.\)Với \(a=1\)và \(b=-1\)thì \(g\left(x\right)=x^2-x-2\)
Ta có: \(g\left(x\right)=x^2-1-x-1=\left(x^2-1\right)-\left(x+1\right)=\left(x^2-x+x-1\right)-\left(x+1\right)\)
\(=\left[x\left(x-1\right)+x-1\right]-\left(x+1\right)=\left(x+1\right)9x-1-\left(x+1\right)=\left(x+1\right)\left(x-1-1\right)\)
Vậy: \(g\left(x\right)=\left(x-2\right)\left(x+1\right)\)
Ta có: \(h\left(x\right)==f\left(x\right)-g\left(x\right)=x^2-3x+1-\left(x^2-x-2\right)=-2x+3\)
\(h\left(x\right)=0\)\(\Leftrightarrow-2x+3=0\Leftrightarrow-2x=0-3=-3\Leftrightarrow z=\left(-3\right):\left(-2\right)\Leftrightarrow x=\frac{3}{2}\)
Khi \(a=\frac{3}{2}\)thì \(f\left(a\right)-g\left(a\right)=0\Leftrightarrow f\left(a\right)=g\left(a\right)\)
Chắc vậy !!!
Đặt f(x)=0
=>x+1=0 hoặc x-2=0
=>x=-1 hoặc x=2
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}g\left(-1\right)=0\\g\left(2\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1+a-b-6=0\\8+4a+2b-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=7\\4a+2b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-5\end{matrix}\right.\)
Vậy: \(g\left(x\right)=x^3+2x^2-5x-6\)
g(-3)=-27+18+15-6=0
=>x=-3 là nghiệm của g(x)
Đa thức \(g\left(x\right)=x^2+x-6\)có nghiệm \(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow x^2+2x-3x-6=0\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
Để đa thức f(x) = x3+ax2-bx+12 chia hết cho g(x) = x2+x-6 thì 3 và -2 cũng là hai nghiệm của đa thức x3+ax2-bx+12
Nếu x = 3 thì \(f\left(3\right)=27+9a-3b+12=0\)
\(\Leftrightarrow9a-3b=-39\Leftrightarrow3a-b=-13\)(1)
Nếu x = -2 thì \(f\left(-2\right)=-8+4a+2b+12=0\)
\(\Leftrightarrow4a+2b=-4\Leftrightarrow2a+b=-2\)(2)
Lấy (1) + (2), ta được: \(5a=-15\Leftrightarrow a=-3\)
\(\Rightarrow b=-2+3.2=4\)
Vậy a= -3; b = 4
x^2+1 x^3+ax^2+bx-2 x+a x^3 +x ax^2+(b-1)x-2 ax^2 +a (b-1)x -(a+2)
Để f(x) = x3+ax2+bx-2 chia hết cho g(x) =x2+1 thì \(\left(b-1\right)x-\left(a+2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}b-1=0\\a+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\a=-2\end{cases}}\)
đăng lại làm j
nhanh lên z kon