K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2016

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{10}\)

\(\Rightarrow2017\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2017.\frac{1}{10}\)

\(\Rightarrow\frac{2017}{a+b}+\frac{2017}{b+c}+\frac{2017}{c+a}=201,7\)

Mà \(2017=a+b+c\) nên :

\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=201,7\)

\(\Rightarrow\left(\frac{a+b}{a+b}+\frac{c}{a+b}\right)+\left(\frac{b+c}{b+c}+\frac{a}{b+c}\right)+\left(\frac{a+c}{a+b}+\frac{b}{a+c}\right)=201,7\)

\(3+\frac{c}{a+b}+\frac{a}{b+c}+\frac{b}{c+a}=201,7\)

\(\Leftrightarrow M=\frac{c}{a+b}+\frac{a}{b+c}+\frac{b}{c+a}=201,7-3\)

\(\Leftrightarrow M=198,7\)

Vậy ...

2 tháng 4 2017

198,7 do ban a

16 tháng 12 2016

ta có 

\(\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)

\(3+\frac{bc\left(b+c\right)+ac\left(b+c\right)+ab\left(a+b\right)}{abc}=0\) 

\(\frac{b^2c+bc^2}{abc}>0\)

tương tự các phân thức còn lại  suy ra a=b=c

16 tháng 1 2018

=> (a+b+c).(1/a+b + 1/b+c  +1/c+a) = 2017/90

=> a+b+c/a+b + a+b+c/b+c + a+b+c/c+a = 2017/90

=> 1 + c/a+b + 1 + a/b+c + 1 + b/c+a = 2017/90

=> a/b+c + b/c+a  +c/a+b = 2017/90 - 3 = 1747/90

Vậy S = 1747/90

Tk mk nha

10 tháng 7 2017

a ) \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-\left(a+b+c\right)}{ac+bc+c^2}\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2\right)+ab\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+c^2+ac\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

=> a = - b hoặc b = - c hoặc a = - c

Xét a = - b ta có :

\(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\left(\frac{1}{-b^{2017}}+\frac{1}{b^{2017}}\right)+\frac{1}{c^{2017}}=\frac{1}{c^{2017}}\) (1)

\(\frac{1}{a^{2017}+b^{2017}+c^{2017}}=\frac{1}{\left(-b^{2017}+b^{2017}\right)+c^{2017}}=\frac{1}{c^{2017}}\) (2)

Từ (1) ; (2) => \(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{a^{2017}+b^{2017}+c^{2017}}\)

Tới đây bạn xét tiếp 2 TH b = - c và c = - a nữa ta có đpcm nha

b ) TQ :

Nếu a +b +c khác 0; a;b;c khác 0 ; \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\) thì \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)

9 tháng 8 2017

Ta có :

\(A+3=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3\)

\(=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)\)

\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\)

\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\)

\(=2017.\frac{1}{2017}=1\)

\(\Rightarrow A=1-3=-2\)

22 tháng 8 2016

Có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
 \(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{a.b}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)
\(\Leftrightarrow\left(a+b\right)c\left(a+b+c\right)=-\left(a+b\right)ab\)
\(\Leftrightarrow\left(a+b\right)\left(ca+cb+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(c+a\right)\left(c+b\right)=0.\)
Vậy: hoặc a + b = 0 hoặc c + a = 0 hoặc c + b =0.
Vai trò của a, b, c như nhau nên giả sử \(a+b=0\Leftrightarrow a=-b.\)
Khi đó: \(\frac{1}{a^{2007}}+\frac{1}{b^{2007}}+\frac{1}{c^{2007}}=\frac{1}{a^{2007}}+\frac{1}{\left(-a\right)^{2007}}+\frac{1}{c^{2007}}=\frac{1}{c^{2007}}.\)
           \(\frac{1}{a^{2007}+b^{2007}+c^{2007}}=\frac{1}{a^{2007}+\left(-a\right)^{2007}+c^{2007}}=\frac{1}{c^{2007}}.\)
Vậy: \(\frac{1}{a^{2007}}+\frac{1}{b^{2007}}+\frac{1}{c^{2007}}=\frac{1}{a^{2007}+b^{2007}+c^{2007}}.\)(đpcm).

22 tháng 8 2016

bạn béo 

12 tháng 8 2017

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-\left(a+b+c\right)}{c\left(a+b+c\right)}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{ac+bc+c^2}\)

\(\Leftrightarrow-\left(a+b\right)ab=\left(a+b\right)\left(ac+bc+c^2\right)\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2\right)+\left(a+b\right)ab=0\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

=> a = - b hoặc b = - c hoặc c = - a 

Xét a = - b ta có \(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{-b^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{c^{2017}}\)(1)

\(\frac{1}{a^{2017}+b^{2017}+c^{2017}}=\frac{1}{\left(-b^{2017}+b^{2017}\right)+c^{2017}}=\frac{1}{c^{2017}}\)(2)

Từ (1);(2) \(\Rightarrow\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{a^{2017}+b^{2017}+c^{2017}}\)

Xét tiếp 2 TH b = - c hoặc c = - a nữa ta có đpcm nha

3 tháng 1 2019

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow\frac{\left(ab+bc+ac\right).\left(a+b+c\right)-abc}{abc.\left(a+b+c\right)}=0\Leftrightarrow\left(ab+bc+ac\right).\left(a+b+c\right)-abc=0\)

\(\Leftrightarrow\left(a+b\right).\left(a+c\right).\left(c+b\right)=0\Leftrightarrow\orbr{\begin{cases}a=-b\\a=-c\end{cases}\text{hoac }c=-b}\)

thay vào rồi tính (nhớ đưa dấu âm lên tử nha) còn phần phan tích sẽ giải thích sau-bây h bận >:

3 tháng 1 2019

\(\left(a+b+c\right).\left(ab+ac+bc\right)-abc=0\)

\(\Leftrightarrow a^2c+a^2b+abc+b^2a+b^2c+abc+c^2a+c^2b=0\)

\(\Leftrightarrow\left(abc+a^2c\right)+\left(abc+b^2c\right)+\left(a^2b+ab^2\right)+\left(c^2a+c^2b\right)=0\)

\(\Leftrightarrow ac.\left(a+b\right)+cb.\left(a+b\right)+ab.\left(a+b\right)+c^2.\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right).\left(ac+cb+ab+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right).\left[c\left(a+c\right)+b.\left(a+c\right)\right]=\left(a+b\right).\left(a+c\right).\left(c+b\right)=0\)

~~ cách này dài dòng >: but t ko nghĩ đc cách nào ngắn hưn =(

30 tháng 7 2017

thiếu đề bài rồi 

30 tháng 7 2017

Cái đề là  \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2017}???\)