khi chia số tự nhiên b cho 72, được số dư là 24.
A ) b chia hết cho 2 không?
B ) b chia hết cho 18 không ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b chia cho 72 dư 24 => b=72.k+24
Ta có:
72 chia hết cho 2 => 72.k chia hết cho 2
24 chia hết cho 2
=>b chia hết cho 2
Ta có:
72 chia hết cho 18 =>72.k chia hết cho 18
24 ko chia hết cho 18
=>b ko chia hét cho 18
Khi chia b cho 72, ta được số dư là 24 nên b có thể viết dưới dạng
b = 72 . k + 24 với k thuộc N
Vì 72k chia hết cho 2 và 24 chia hết cho 2 nên a chia hết cho 2.
Vì 72 không chia hết cho 18 và 24 không chia hết cho 18 nên a không chia hết cho 18.
a) a chia hết cho 2 nhưng ko chia hết cho 4
b) b chia hết cho 3,4 nhưng ko chia hết cho 18
a) Chia hết cho 2
ko chia hết cho 4
b)
Chia hết cho 3, 4, 18
Câu 7:Ta có:24 chia hết cho 6 nên nếu 24 chia một số và có dư, b ko chia hết cho 6
Câu 8:VD:c chia hết cho các số 2,3,6,9
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
vậy số a có giá trị là : a = 72.b +24
72b chia hết cho 2; 24 chia hết cho 2 nên tổng của chúng 72.b +24 = a cũng chia hết cho 2
72b chia hết cho 3; 24 chia hết cho 3 nên tổng của chúng 72.b +24 = a cũng chia hết cho 3
72b chia hết cho 6; 24 chia hết cho 6 nên tổng của chúng 72.b +24 = a cũng chia hết cho 6
A)Co chia het cho 2.
B)khong chia het cho 18.