K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
8 tháng 4 2021

Giả sử \(M\)nằm giữa \(H\)và \(C\).

Tam giác \(AHM\)vuông tại \(H\)suy ra \(\widehat{AMH}< 90^o\Leftrightarrow\widehat{AMC}>90^o\).

Xét tam giác \(AMC\)có: \(\widehat{AMC}>90^o>\widehat{ACM}\Leftrightarrow AC>AM\).

3 tháng 5 2023

Cho ∆ABC, kẻ đường cao AH trên tia đối tia HA lấy điểm M sao cho H là trung điểm của AM

a) Chứng minh ∆ABM cân

b) Chứng minh ∆ABC=∆MBC

 

3 tháng 5 2023

a, Vì AH vuông góc BC ( gt ) 

=> BH vuông góc AM 

Xét tam giác ABM có BH vừa là đường cao , vừa là trung tuyến 

=> tam giác ABM cân tại B 

b, Lại có : AH vuông góc BC 

=> CH vuông góc AM 

Xét tam giác ACM có CH vừa là đường cao , vừa là trung tuyến 

=> tam giác ACM cân tại C

Xét tam giác ABC và tam giác MBC có : 

BC chung 

AB = MB ( tam giác ABM cân tại B ) 

AC = CM ( tam giác ACM cân tại C ) 

=> tam giác ABC = tam giác MBC ( c.c.c ) 

c) Ta có: MH//AB(cmt)

nên EH//AB

Suy ra: \(\widehat{CHE}=\widehat{CBA}\)(hai góc đồng vị)

mà \(\widehat{CBA}=\widehat{HCE}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{EHC}=\widehat{ECH}\)

Xét ΔEHC có \(\widehat{EHC}=\widehat{ECH}\)(cmt)

nên ΔEHC cân tại E(Định lí đảo của tam giác cân)

Ta có: \(\widehat{ECH}+\widehat{EAH}=90^0\)(ΔAHC vuông tại H)

\(\widehat{EHC}+\widehat{AHE}=90^0\)(HE là tia nằm giữa hai tia HC,HA)

mà \(\widehat{EHC}=\widehat{ECH}\)(cmt)

nên \(\widehat{EAH}=\widehat{EHA}\)

Xét ΔEHA có \(\widehat{EAH}=\widehat{EHA}\)(cmt)

nên ΔEHA cân tại E(Định lí đảo của tam giác cân)

Ta có: EH=EC(ΔEHC cân tại E)

mà EH=EA(ΔEHA cân tại E)

nên EC=EA

hay E là trung điểm của AC(Đpcm)

a) Xét ΔAIH và ΔMIB có 

IA=IM(gt)

\(\widehat{AIH}=\widehat{MIB}\)(hai góc đối đỉnh)

IH=IB(I là trung điểm của BH)

Do đó: ΔAIH=ΔMIB(c-g-c)

Suy ra: AH=MB(hai cạnh tương ứng) 

Xét ΔBMA có 

AB+BM>AM(Bđt tam giác)

mà AH=MB(cmt)

nên AB+AH>AM(Đpcm)

b) Xét ΔBIA và ΔHIM có

IA=IM(gt)

\(\widehat{BIA}=\widehat{HIM}\)(hai góc đối đỉnh)

IB=IH(I là trung điểm của BH)

Do đó: ΔBIA=ΔHIM(c-g-c)

Suy ra: \(\widehat{IBA}=\widehat{IHM}\)(hai góc tương ứng)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//MH(Dấu hiệu nhận biết hai đường thẳng song song)

a: Xét ΔAMB và ΔNMC có

MA=MN

góc AMB=góc NMC

MB=MC

Do đó: ΔAMB=ΔNMC

b: Xét ΔBAI có

BH vừa là đường cao, vừa là trung tuyến

nên ΔBAI cân tại B

=>BA=BI=CN

25 tháng 1 2022

mình cần gấp lắm ah

25 tháng 1 2022

Tham khảo

a) Xét ΔAMH và ΔNMB có:

+ AM = NM

+ góc AMH = góc NMB (đối đỉnh)

+ MH = MB

=> ΔAMH = ΔNMB (c-g-c)

=> góc MAH = góc MNB

=> AH//BN

Mà AH vuông góc BC

=> BN vuông góc BC

b) Do ΔAMH = ΔNMB

=> AH = BN

Trong tam giác vuông ABH vuông tại H

=> AB > AH (cạnh huyền là cạnh lớn nhất)

=> AB > BN

c) Ta cm được ΔABM = ΔNHM (c-g-c)

=> góc BAM = góc HNM

Trong ΔANH có:NH > AH

=> góc MAH > góc MNH

=> góc MAH > góc BAM

d) Ta cm được ΔABH = ΔACH (ch-cgv)

=> BH = CH

=> CH = 2. HM

Tam giác ANC có CM là đường trung tuyến (do M là trung điểm của AN)

và CH/CM =2/3

=> H là trọng tâm của ΔANC

=> AH là đường trung tuyến

=>AH đi qua trung điểm của CN

hay A,H,I thẳng hàng

undefined

a) Xét ΔABN và ΔACM có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAN}\) chung

AN=AM(gt)

Do đó: ΔABN=ΔACM(c-g-c)

Suy ra: BN=CM(hai cạnh tương ứng)

b) Xét ΔAHB và ΔAHC có 

AB=AC(ΔABC cân tại A)

AH chung

HB=HC(H là trung điểm của BC)

Do đó: ΔAHB=ΔAHC(c-c-c)

Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

hay AH⊥BC(đpcm)

c) Ta có: AH⊥BC(cmt)

mà H là trung điểm của BC(gt)

nên AH là đường trung trực của BC

⇔EH là đường trung trực của BC

⇔EB=EC(Tính chất đường trung trực của một đoạn thẳng)

Xét ΔEBC có EB=EC(cmt)

nên ΔEBC cân tại E(Định nghĩa tam giác cân)

20 tháng 2 2021

Cảm ơn ạ =))

a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó: ΔEBC=ΔDCB

Suy ra: \(\widehat{HCB}=\widehat{HBC}\)

hay ΔHBC cân tại H

=>HB=HC

mà AB=AC

nên AH là đường trung trực của BC

=>A,H,M thẳng hàng

b: BC=16cm nên BM=CM=8cm

=>AM=6cm

23 tháng 5 2022

a. Nối AM

Xét \(2\Delta:\Delta AMB\) và \(\Delta AMC\) có:

\(\left\{{}\begin{matrix}AM.chung\\AB=AC\left(gt\right)\\BM=BC\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)

Mà: \(\widehat{BMC}=180^o\)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)

\(\Rightarrow AM.là.đường.cao\)

Mà H là giao của BD và CE

Vậy H là trực tâm của tam giác ABC

Vậy AH đi qua M

b. \(MC=16:2=8\left(cm\right)\)

Áp dụng định lý Pi - ta - go, suy ra:

\(AM^2+MC^2=AC^2\)

\(\Leftrightarrow AH=\sqrt{AC^2-MC^2}=\sqrt{10^2-8^2}=6\left(cm\right)\)

14 tháng 4 2022

a) Vì ∆ABC cân tại A có AH là đường cao nên AH cũng là đường trung tuyến

Suy ra BH=CH

Xét ∆AHB và ∆AHC có

AH là cạnh chung

BH=CH (cmt)

AB=AC (∆ABC cân tại A)

Do đó ∆AHB=∆AHC

Xét ∆AMH ta có

AD vuông góc với MH (HD vuông góc AB)

Suy ra AD là đường cao của ∆AMH (1)

DH=DM (gt)

Nên AD là đường trung bình của ∆AMH (2)

Từ (1) và (2) suy ra ∆AMH cân tại A

Suy ra AM=AH

1 tháng 3 2020

a,Ta có:
 \(AH\perp BC\) nên \(\widehat{AHB}\) +90 độ.
Vì M là tia đối của HA nên \(\widehat{MHB}\)= 90 độ.
Xét \(\Delta ABH\) và \(\Delta MBH\)có
AH = MH (gt)
\(\widehat{AHB}\) = \(\widehat{MHB}\) (= 90 độ )
BH : cạnh chung

\(\Rightarrow\Delta ABH=\Delta MBH\)( c.g.c )

b,Xét \(\Delta AHCv\text{à}\Delta MHC\)Ta có:

AH = HM (gt)

\(\widehat{AHC}\)\(\widehat{MHC}\)(= 90 độ)

HC : cạnh chung

\(\Rightarrow\Delta AHC=\Delta MHC\)( c.g.c)

\(\Rightarrow\)AC=CM ( t/ứ)

Mà AC = CN (gt) và CM = AC (cmt)

nên CM = CN

\(\Rightarrow\Delta CMN\)cân