K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2015

Áp dụng hằng đẳng thức dưới dạng 

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(\left(a+b+c\right)^3+\left(a-b-c\right)^3=\left(2a\right)^3-3\left(a+b+c\right)\left(a-b-c\right).2a\)

\(\left(b-c-a\right)^3+\left(c-a-b\right)^3=\left(-2a\right)^3-3\left(b-c-a\right)\left(c-a-b\right).\left(-2a\right)\)

\(\Rightarrow\left(a+b+c\right)^3+\left(a-b-c\right)^3+\left(b-c-a\right)^3+\left(c-a-b\right)^3\)

\(=\left(2\right)^3+\left(-2a\right)^3-6a\left[a+\left(b+c\right)\right]\left[a-\left(b+c\right)\right]+6a\left[-a+\left(b-c\right)\right]\left[-a-\left(b-c\right)\right]\)

\(=-6a\left\{a^2-\left(b+c\right)^2-\left[\left(-a\right)^2-\left(b-c\right)^2\right]\right\}\)

\(=-6a\left\{a^2-a^2+\left(b-c\right)^2-\left(b+c\right)^2\right\}\)

\(=-6a\left[b-c+b+c\right]\left[b-c-\left(b+c\right)\right]=-6a.2b.\left(-2c\right)\)

\(=24abc\)

ừ chie cần k vaod chữ đúng thôi

a,Đặt a+b-c=x, c+a-b=y, b+c-a=z

=>x+y+z=a+b-c+c+a-b+b+c-a=a+b+c

Ta có hằng đẳng thức:

(x+y+z)^3-3x-3y-3z=3(x+y)(x+z)(y+z)

=>(a+b+c)^3-(b+c-a)^3-(a+c-b)^3-(a+b-c)^3=(x+y+z)^3-x^3-y^3-z^3

=3(x+y)(x+z)(y+z)

=3(a+b-c+c+a-b)(c+a-b+b+c-a)(b+c-a+a+b-c)

=3.2a.2b.2c

=24abc

15 tháng 10 2016

Đặt \(x=a+b;y=b+c;z=c+a\) ta có:

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x-y\right)+z^3-3xyz\)

\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x-y-z\right)\)

\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3z\left(x+y\right)-3xy\right]\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz-3xz-3yz-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-yx\right)\)

Thay vào ta có:\(\left(a+b+b+c+c+a\right)\left[\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2-\left(a+b\right)\left(b+c\right)-\left(b+c\right)\left(c+a\right)-\left(c+a\right)\left(a+b\right)\right]\)

\(=\left(2a+2b+2c\right)\left(a^2-ab-ac+b^2-bc+c^2\right)\)

\(=2\left(a+b+c\right)\left(a^2-ab-ac+b^2-bc+c^2\right)\)

 

 

 

16 tháng 10 2016

cảm ơn bạn nhìu

 

7 tháng 9 2019

Câu hỏi của Nhàn Nguyễn - Toán lớp 8 - Học toán với OnlineMath

29 tháng 11 2015

sao ma kho du day ban..minh bo tay bo chan lun oy oy oy

xin loi minh khong the giup ban duoc

29 tháng 11 2015

mk chưa hok tới lớp 8 

13 tháng 7 2021

a) (a+b)3+(a-b)3=a3+3a2b+3ab2+b3+a3-3a2b+3ab2-b3

                          =2a3+6ab2

b) (a + b + c)2 + (a − b − c)2 + (b − c − a)2 + (c − a − b)2

=a2+b2+c2+2ab+2bc+2ca+a2+b2+c2-2ab+2bc-2ac+a2+b2+c2-2bc+2ca-2ba+a2+b2+c2-2ca+2ab-2cb

=4a2+4b2+4c2

a) Ta có: \(\left(a+b\right)^3+\left(a-b\right)^3\)

\(=\left(a+b+a-b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=2a\cdot\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)\)

\(=2a\cdot\left(a^2+3b^2\right)\)

\(=2a^3+6ab^2\)