K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2023

\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)

15 tháng 10 2023

b:

\(D=-25x^2+10x-1-10\)

\(=-\left(25x^2-10x+1\right)-10\)

\(=-\left(5x-1\right)^2-10< =-10\)

Dấu = xảy ra khi x=1/5

\(E=-9x^2-6x-1+20\)

\(=-\left(9x^2+6x+1\right)+20\)

\(=-\left(3x+1\right)^2+20< =20\)

Dấu = xảy ra khi x=-1/3

\(F=-x^2+2x-1+1\)

\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)

Dấu = xảy ra khi x=1

1 tháng 8 2016

a) -( x-y)2 - (x-1)2 -2 

GTLN = -2

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

+ Biểu diễn miền nghiệm của BPT \(x - y \le 6\)

Bước 1: Vẽ đường thẳng \(d:x - y = 6\) trên mặt phẳng tọa độ Õy

Bước 2: Lấy O(0;0) không thuộc d, ta có: \(0 - 0 = 0 \le 6\) => điểm O(0;0) thuộc miền nghiệm

=> Miền nghiệm của BPT \(x - y \le 6\) là nửa mp bờ d, chứa gốc tọa độ.

+ Tương tự, ta có miền nghiệm của BPT \(2x - y \le 2\) là nửa mp bờ \(d':2x - y = 0\), chứa gốc tọa độ.

+ Miền nghiệm của BPT \(x \ge 0\) là nửa mp bên phải Oy (tính cả trục Oy)

+ Miền nghiệm của BPT \(y \ge 0\) là nửa mp phía trên Ox (tính cả trục Ox)

Biểu diễn trên cùng một mặt phẳng tọa độ và gạch bỏ các miền không là nghiệm của từng BPT, ta được:

 

Miền nghiệm của hệ bất phương trình đã cho là miền tứ giác OABC (miền không bị gạch) với \(A(0;6),B(\frac{8}{3};\frac{{10}}{3}),C(1;0)\)

b)

Thay tọa độ các điểm \(O(0;0),A(0;6),B(\frac{8}{3};\frac{{10}}{3}),C(1;0)\) và biểu thức \(F(x;y) = 2x + 3y\) ta được:

\(\begin{array}{l}F(0;0) = 2.0 + 3.0 = 0\\F(0;6) = 2.0 + 3.6 = 18\\F(\frac{8}{3};\frac{{10}}{3}) = 2.\frac{8}{3} + 3.\frac{{10}}{3} = \frac{{46}}{3}\\F(1;0) = 2.1 + 3.0 = 2\end{array}\)

\( \Rightarrow \min F = 0\),  \(\max F = 18\)

Vậy trên miền D, giá trị nhỏ nhất của F bằng 0, giá trị lớn nhất của F bằng \(18\).

6 tháng 12 2017

1, 

xy + y + x = 6

<=> y(x + 1) + (x + 1) = 7

<=> (x + 1)(y + 1) = 7

Vì x,y thuộc N nên x+1, y+1 thuộc N => x+1 và y+1 thuộc Ư(7) = {1;7}

Ta có bảng:

x+117
y+171
x06
y60

2,

a, Vì \(\left(x-2\right)^2\ge0\Rightarrow-\left(x-2\right)^2\le0\Rightarrow A=5-\left(x-2\right)^2\le5\)

Dấu "=" xảy ra khi (x-2)2 = 0 => x = 2

Vậy GTLN của A là 5 khi x = 2

b, Vì \(\hept{\begin{cases}3\left|x-2\right|\ge0\\\left|y-1\right|\ge0\end{cases}}\)

\(\Rightarrow3\left|x-2\right|+\left|y-1\right|\ge0\)

\(\Rightarrow B=3\left|x-2\right|+\left|y-1\right|+7\ge7\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}3\left|x-2\right|=0\\\left|y-1\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)

Vậy GTNN của B = 7 khi x=2,y=1

16 tháng 4 2017

tên giống mk tích cho mk nhé

16 tháng 4 2017

bạn biết giải bài này ko à giúp mình với

Ta có :

\(A=x^6+y^6\)

\(=\left(x^2\right)^3+\left(y^2\right)^3\)

\(=\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)\)

\(=x^4-x^2y^2+y^4\)

\(=\left(x^4+2x^2y^2+y^4\right)-3x^2y^2\)

\(=\left(x^2+y^2\right)^2-3x^2y^2\)

\(=1-3x^2y^2\)

Lại có : \(-3x^2y^2\le0\forall x\Rightarrow1-3x^2y^2\le1\forall x\)

Vậy giá trị lớn nhất của A là 1

Dấu "=" xảy ra khi \(x=0\)hoặc \(y=0\).
 

19 tháng 1 2017

Bắt quả tang dũng nhá!~

16 tháng 6 2019

https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/

16 tháng 6 2019

bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo