Cho a-b =6 và a.b=9.Tính A=a3-b3-84
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với ab = 6, a + b = –5, ta được:
a3 + b3 = (a + b)3 – 3ab(a + b) = (–5)3 – 3.6.(–5) = –53 + 3.6.5 = –125 + 90 = –35
`a)a(2+b)+b(a+2)`
`=2a+ab+ab+2b`
`=2(a+b)+2ab`
`=2.10+2.(-36)`
`=20-72=-52`
`b)a^2+b^2`
`=(a+b)^2-2ab`
`=10^2-2.(-36)`
`=100+72=172`
`c)a^3+b^3`
`=(a+b)(a^2-ab+b^2)`
`=10[(a+b)^2-3ab]`
`=10[10^2-3.(-36)]`
`=10(100+108)`
`=10.208=2080`
a, \(=>2a+ab+ab+2b=2\left(a+b+ab\right)=2\left(10-36\right)=-52\)
b, \(a^2+b^2=a^2+2ab+b^2-2ab=\left(a+b\right)^2-2ab=\left(10\right)^2-2\left(-36\right)=172\)
c, \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=10\left[\left(a+b\right)^2-3ab\right]\)
\(=10\left[10^2-3\left(-36\right)\right]=2080\)
b) Ta có: \(a^2+b^2\)
\(=\left(a-b\right)^2+2ab\)
\(=3^2+2\cdot\left(-2\right)=9-4=5\)
c) Ta có: \(a^3-b^3\)
\(=\left(a-b\right)^3-3ab\left(a-b\right)\)
\(=3^3-3\cdot\left(-2\right)\cdot3\)
\(=27+18=45\)
a3-b3-84
=(a-b)2 ( a2+ab+b2)-84
6.(a2-2ab+b2+3ab)-84
6[(a-b)2+3ab] -84
6( 62+3.9)-84
=294
ta có : a\(^3\)- b\(^3\)- 84 = (a-b)(a\(^2\)+ ab +b\(^2\)) - 84
= 6*(9+ a\(^2\)+b\(^2\)) -84
ta lại có: (a -b)=6 <=> ( a-b)\(^2\)= 36
<=> a\(^2\)-2ab +b\(^2\)=36 <=>a\(^2\)+b\(^2\)- 18 =36 <=> a\(^2\)+ b\(^2\)= 36 +18 =54
vậy a\(^3\)- b\(^3\)- 84 =6*(9+54)-84 =294
Có : a3 - b3 - 84
= (a - b)(a2 + ab + b2) - 84
= 6.(a2 + b2 + 9) - 84
= 6a2 + 6b2 + 54 - 84
= 6(a2 + b2) - 30
= 6 [ (a - b)2 + 2ab ] - 30
= 6 ( 62 + 2.9 ) - 30
= 324 - 30
= 294
a3 - b3 - 84
= (a - b)(a2 + ab + b2) - 84
= 6.(a2 + b2 + 9) - 84
= 6a2 + 6b2 + 54 - 84
= 6(a2 + b2) - 30
= 6 [ (a - b)2 + 2ab ] - 30
= 6 ( 62 + 2.9 ) - 30
= 324 - 30
= 294
\(A=a^3-b^3-84\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)-84\)
\(=\left(a-b\right)\left\{\left(a-b\right)^2+3ab\right\}\)
\(=6.\left[6^2+3.9\right]=6.63=379\)
\(Ủng\)hộ nhak
Câu 9:
\(a,\left(a+1\right)^2\ge4a\\ \Leftrightarrow a^2+2a+1\ge4a\\ \Leftrightarrow a^2-2a+1\ge0\\ \Leftrightarrow\left(a-1\right)^2\ge0\left(luôn.đúng\right)\)
Dấu \("="\Leftrightarrow a=1\)
\(b,\) Áp dụng BĐT cosi: \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}\cdot2\sqrt{b}\cdot2\sqrt{c}=8\sqrt{abc}=8\)
Dấu \("="\Leftrightarrow a=b=c=1\)
Câu 10:
\(a,\left(a+b\right)^2\le2\left(a^2+b^2\right)\\ \Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\\ \Leftrightarrow a^2-2ab+b^2\ge0\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(luôn.đúng\right)\)
Dấu \("="\Leftrightarrow a=b\)
\(b,\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\le3a^2+3b^2+3c^2\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(luôn.đúng\right)\)
Dấu \("="\Leftrightarrow a=b=c\)
Câu 13:
\(M=\left(a^2+ab+\dfrac{1}{4}b^2\right)-3\left(a+\dfrac{1}{2}b\right)+\dfrac{3}{4}b^2-\dfrac{3}{2}b+2021\\ M=\left[\left(a+\dfrac{1}{2}b\right)^2-2\cdot\dfrac{3}{2}\left(a+\dfrac{1}{2}b\right)+\dfrac{9}{4}\right]+\dfrac{3}{4}\left(b^2-2b+1\right)+2018\\ M=\left(a+\dfrac{1}{2}b-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\left(b-1\right)^2+2018\ge2018\\ M_{min}=2018\Leftrightarrow\left\{{}\begin{matrix}a+\dfrac{1}{2}b=\dfrac{3}{2}\\b=1\end{matrix}\right.\Leftrightarrow a=b=1\)
Câu 6:
$2=(a+b)(a^2-ab+b^2)>0$
$\Rightarrow a+b>0$
$4(a^3+b^3)-N^3=4(a^3+b^3)-(a+b)^3$
$=3(a^3+b^3)-3ab(a+b)=(a+b)(a-b)^2\geq 0$
$\Rightarrow N^3\leq 4(a^3+b^3)=8$
$\Rightarrow N\leq 2$
Vậy $N_{\max}=2$
a) Rút gọn M = 279. Với m = 2017 giá trị của M = 279.
b) N = 8 a 3 - 27 b 3 = ( 2 a ) 3 - ( 3 b ) 3 = ( 2 a - 3 b ) 3 + 3.2a.3b.(2a - 3b)
Thay a.b = 12;2a - 3b = 5 ta thu được N - 1205.
c) Cách 1: Từ a + b = 1 Þ a = 1 - b thế vào K.
Thực hiện rút gọn K, ta có kết quả K = 1.
Cách 2: Tìm cách đưa biêu thức về dạng a + b.
a 3 + b 3 = ( a + b ) 3 – 3ab(a + b) = 1 - 3ab;
6 a 2 b 2 (a + b) = 6 a 2 b 2 kết hợp với 3ab( a 2 + b 2 ) bằng cách đặt 3ab làm nhân tử chung ta được 3ab( a 2 + 2ab + b 2 ) = 3ab.
Thực hiện rút gọn K = 1.
Theo bài ra ta có :
\(a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)\)
Thay \(a-b=6;a.b=9\)vào biểu thức trên ta , có :
\(6^3+3.9.6=378\)
mà biểu thức - 84
Vậy \(378-84=294\)
Vậy \(a^3-b^3-84=294\)