Có 7+a chia hết cho 6. CM: 7xa chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho S=1-3+32-33+...+398-399
a. Chứng minh: S chia hêt cho 20
b. Rút gọn S, từ đó suy ra 3100 chia 4 dư 1
chịu
cho S=1-3+32-33+...+398-399
a. Chứng minh: S chia hêt cho 20
b. Rút gọn S, từ đó suy ra 3100 chia 4 dư 1
chịu
cho S=1-3+32-33+...+398-399
a. Chứng minh: S chia hêt cho 20
b. Rút gọn S, từ đó suy ra 3100 chia 4 dư 1
chịu
\(a^3+3a^2+2a=a\left(a^2+3a+2\right)\)
\(=a\left(a^2+2a+a+2\right)\)
\(=a\left[a\left(a+2\right)+\left(a+2\right)\right]=a\left(a+1\right)\left(a+2\right)\)
Tích 3 số liên tiếp chia hết cho 3 và có 1 số chẵn và (2,3) = 1 nên \(a^3+3a^2+2a⋮6\left(đpcm\right)\)
câu b sai đầu bài
a) a-b chia hết cho 6=>a-b+6b chia hết cho 6( vì 6b chia hết cho 6)=>a+ 5b chia hết cho 6
a) \(\left(a+b\right)⋮6\Leftrightarrow\left(a+b\right)-6.4b⋮6\Leftrightarrow\left(a-23b\right)⋮6\).
b) \(\left(a+b\right)⋮7\Leftrightarrow\left(a+b\right)-7.3b⋮7\Leftrightarrow\left(a-20b\right)⋮7\).