cho hình vuông abcd. Gọi N là một điểm bất kỳ trên CD sao cho CN < ND. Vẽ đường tròn tâm O đường Kính BN. (o) cắt AC tại F; BF cắt AD tại M;BN cắt AC tại E. 1) Chứng minh tứ giác MEBA nội tiếp 2)Gọi giao điểm của ME và NF là Q, MN cắt (o) ở P. Chứng minh ba điểm B;Q;P thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Điểm M ở đâu vậy bạn?
b: góc ONP=góc ONB+góc PNB
góc ANB=1/2*sđ cung AB=90 độ
=>BN vuông góc AK
=>BN//KC
=>góc ABN=góc ACK
=>góc ONB=góc ACK
Xét ΔKBC có
KP vừa là đường cao, vừa là trung tuyến
=>ΔKBC cân tại K
=>góc BKP=góc CKP
góc ONP=góc ONB+góc BNP
=góc ONB+góc BKP
=góc ONB+góc CKP
=góc OBN+góc NAB=90 độ
=>NP là tiếp tuyến của (O)
b: góc ONP=góc ONB+góc PNB
góc ANB=1/2*sđ cung AB=90 độ
=>BN vuông góc AK
=>BN//KC
=>góc ABN=góc ACK
=>góc ONB=góc ACK
Xét ΔKBC có
KP vừa là đường cao, vừa là trung tuyến
=>ΔKBC cân tại K
=>góc BKP=góc CKP
góc ONP=góc ONB+góc BNP
=góc ONB+góc BKP
=góc ONB+góc CKP
=góc OBN+góc NAB=90 độ
=>NP là tiếp tuyến của (O)
a: KNBP nội tiếp
=>góc PNK=góc PBK; góc PKN=180 độ-góc NBP
=>góc PNK=góc PCK
=>góc PNK=góc AKP
180 độ-góc NBP=góc ABN
=>180 độ-góc NBP=góc AKP
=>góc PNK=góc PKN
=>PK=PN
a: Xét (O) có
EA,EC là tiếp tuyến
Do đó: EA=EC
=>E nằm trên đường trung trực của AC(1)
Ta có: OA=OC
=>O nằm trên đường trung trực của AC(2)
Từ (1) và (2) suy ra OE là đường trung trực của AC
=>OE\(\perp\)AC tại trung điểm của AC
b: Xét tứ giác NCMA có
\(\widehat{CNA}=\widehat{CMA}=\widehat{MAN}=90^0\)
=>NCMA là hình chữ nhật
=>NM cắt CA tại trung điểm của mỗi đường
mà I là trung điểm của NM
nên I là trung điểm của CA
Ta có: OE vuông góc AC tại trung điểm của AC(cmt)
mà I là trung điểm của AC
nên OE\(\perp\)AC tại I
=>O,I,E thẳng hàng
c: Gọi giao điểm của CB với AN là F
Ta có: CM\(\perp\)AB
FA\(\perp\)AB
Do đó: CM//FA
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔABC vuông tại C
=>AC\(\perp\)BC tại C
=>AC\(\perp\)FB tại C
=>ΔACF vuông tại C
Xét ΔEAC có EA=EC
nên ΔEAC cân tại E
=>\(\widehat{EAC}=\widehat{ECA}\)
Ta có: \(\widehat{EAC}+\widehat{EFC}=90^0\)(ΔACF vuông tại C)
\(\widehat{ECA}+\widehat{ECF}=\widehat{ACF}=90^0\)
mà \(\widehat{EAC}=\widehat{ECA}\)
nên \(\widehat{EFC}=\widehat{ECF}\)
=>EF=EC
mà EA=EC
nên EF=EA(3)
Xét ΔEAB có KM//AE
nên \(\dfrac{KM}{AE}=\dfrac{BK}{BE}\left(4\right)\)
Xét ΔBFE có CK//FE
nên \(\dfrac{CK}{FE}=\dfrac{BK}{BE}\left(5\right)\)
Từ (3),(4),(5) suy ra \(\dfrac{KM}{AE}=\dfrac{CK}{FE}\)
mà AE=FE
nên KM=CK
=>K là trung điểm của CM
1: góc CND=1/2*180=90 độ
Vì góc CNE+góc CKE=180 độ
nên CNEK nội tiếp
2: Xét ΔMNE và ΔMBC có
góc MNE=góc MBC
góc M chung
=>ΔMNE đồng dạng với ΔMBC
=>MN/MB=ME/MC
=>MN*MC=MB*ME