1/3 + 2/3 : x = -7
giải giúp mình vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^3+6x^2-3x+\dfrac{1}{2}=2\cdot\dfrac{1}{3}^3+6\cdot\dfrac{1}{3}^2-3\cdot\dfrac{1}{3}+\dfrac{1}{2}\)
=13/54
a: (x-3)(x-1)-x(x-2)=0
=>\(x^2-4x+3-x^2+2x=0\)
=>\(-2x+3=0\)
=>-2x=-3
=>\(x=\dfrac{3}{2}\)
b: \(\left(x+2y\right)^2-\left(2x-y\right)^2\)
\(=\left(x+2y+2x-y\right)\left(x+2y-2x+y\right)\)
\(=\left(3x+y\right)\left(-x+3y\right)\)
\(\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times...\times\left(1-\dfrac{1}{2015}\right)\\ =\dfrac{1}{2}\times\dfrac{2}{3}\times...\times\dfrac{2014}{2015}\\ =\dfrac{1}{2015}\)
Ta có: \(5x^3+4x^2-3x\left(2x^2+7x-1\right)\)
\(=5x^3+4x^2-6x^3-21x^2+3x\)
\(=-x^3-17x^2+3x\)
\(A=\frac{\left[\left(25-1\right):1+1\right]\left(25+1\right)}{2}=325.\)
\(B=\frac{\left[\left(51-3\right):2+1\right]\left(51+3\right)}{2}=675\)
\(C=\frac{\left[\left(81-1\right):4+1\right]\left(81+1\right)}{2}=861\)
\(a.\left(\dfrac{2}{5}.\dfrac{5}{2}\right).\dfrac{10}{21}=1.\dfrac{10}{21}=\dfrac{10}{21}\)
\(\dfrac{1}{2}.4+\dfrac{3}{4}.4=2+3=5\)
Ta có:
\(\dfrac{1}{x-y}+\dfrac{3xy}{y^3-x^3}+\dfrac{x-y}{x^2+xy+y^2}\\ =\dfrac{x^2+xy+y^2-3xy+\left(x-y\right)^2}{x^3-y^3}\\ =\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\\ =\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)
\(\dfrac{1}{x-y}+\dfrac{3xy}{y^3-x^3}+\dfrac{x-y}{x^2+xy+y^2}\) \(=\dfrac{x^2+xy+y^2}{x^3-y^3}-\dfrac{3xy}{x^3-y^3}+\dfrac{\left(x-y\right)^2}{x^3-y^3}\)
\(=\dfrac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{x^3-y^3}\)
\(=\dfrac{2x^2+2y^2-4xy}{x^3-y^3}\)
\(=\dfrac{2x^2-2xy-2xy+2y^2}{x^3-y^3}\)
\(=\dfrac{2x\left(x-y\right)-2y\left(x-y\right)}{x^3-y^3}\)
\(=\dfrac{\left(2x-2y\right)\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2x-2y}{x^2+xy+y^2}\)
`1 / 3 + 2 / 3 : x = -7`
`2 / 3 : x = -7 - 1 / 3`
`2 / 3 : x = -22 / 3`
`x = 2 / 3 : -22 / 3`
`x = -1 / 11`
\(\dfrac{1}{2}+\dfrac{2}{3}:x=-7\)
\(\dfrac{2}{3}:x=\left(-7\right)-\dfrac{1}{3}\)
\(\dfrac{2}{3}:x=-\dfrac{22}{3}\)
\(x=\dfrac{2}{3}:\left(-\dfrac{22}{3}\right)\)
\(x=\dfrac{2}{3}\cdot\left(-\dfrac{3}{22}\right)\)
\(x=-\dfrac{6}{66}\)
\(x=-\dfrac{1}{11}\)