\(\frac{3}{5\times8}+\frac{3}{8\times11}+\frac{3}{11\times14}+.........+\frac{3}{605\times608}+\frac{3}{608\times611}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm y đúng hơn là tính :
\(\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+...+\frac{1}{y\left(y+3\right)}=\frac{98}{1545}\)
\(\Rightarrow\frac{1}{3}\left(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+...+\frac{3}{y\left(y+3\right)}\right)=\frac{98}{1545}\)
\(\Rightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{y}-\frac{1}{y+3}\right)=\frac{98}{1545}\)
\(\Rightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{y+3}\right)=\frac{98}{1545}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{y+3}=\frac{98}{1545}\div\frac{1}{3}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{y+3}=\frac{98}{515}\)
\(\Rightarrow\frac{1}{y+3}=\frac{1}{5}-\frac{98}{515}\)
\(\Rightarrow\frac{1}{y+3}=\frac{5}{515}=\frac{1}{103}\)
\(\Rightarrow y+3=103\)
\(\Rightarrow y=100\)
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{4620}\)
\(\frac{1}{x+3}=\frac{823}{4620}\)
\(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
\(=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x\left(x+3\right)}\right)=\frac{101}{1540}\)
\(=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)\)
\(=\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(=\frac{1}{x+3}=\frac{1}{308}\)
Đây là tổng của 2 dãy:
\(\frac{1}{1\times3\times5}+\frac{1}{3\times5\times7}+\frac{1}{5\times7\times9}+...+\frac{1}{995\times997\times999}\)(1)
và
\(\frac{1}{2\times5\times8}+\frac{1}{5\times8\times11}+\frac{1}{8\times11\times14}+...+\frac{1}{1493\times1496\times1499}\)(2)
Dãy số có dạng là tích 3 thừa số, trong đó thừa số thứ 3 hơn thừa số thứ nhất n đơn vị và 2 thừa số cuối của phân số trước là 2 thừa số đầu của phân số sau. Để tính dãy kiểu này cần đưa tử số về hiệu của thừa số thứ 3 và thừa số thứ nhất (hiệu = n):
Vậy nhân dãy thứ nhất với 4:
\(=\frac{4}{1\times3\times5}+\frac{4}{3\times5\times7}+\frac{4}{5\times7\times9}+...+\frac{4}{995\times997\times999}\)
Nhận xét:
- \(\frac{4}{1\times3\times5}=\frac{5-1}{1\times3\times5}=\frac{5}{1\times3\times5}-\frac{1}{1\times3\times5}=\frac{1}{1\times3}-\frac{1}{3\times5}\)
- \(\frac{4}{3\times5\times7}=\frac{7-3}{3\times5\times7}=\frac{7}{3\times5\times7}-\frac{3}{3\times5\times7}=\frac{1}{3\times5}-\frac{1}{5\times7}\)
Vậy 4 lần tổng dãy 1 là:
\(\frac{1}{1\times3}-\frac{1}{3\times5}+\frac{1}{3\times5}-\frac{1}{5\times7}+...+\frac{1}{995\times997}-\frac{1}{997\times999}\)
\(\frac{1}{1\times3}-\frac{1}{997\times999}\)
Suy ra tổng dãy (1) là \(\left(\frac{1}{3}-\frac{1}{997\times999}\right)\times\frac{1}{4}\)
Làm tương tự tính được tổng dãy (2) là: \(\left(\frac{1}{2\times5}-\frac{1}{1496\times1499}\right)\times\frac{1}{6}\)
Cộng 2 kết quả lại được tổng cần tính
1/5x8 + 1/8x11 + 1/11x14 + ... + 1/xx(x+3) = 101/1540
1/3 x (3/5x8 + 3/8x11 + 3/11x14 + ... + 3/xx(x+3) = 101/1540
1/3 x (1/5 - 1/8 + 1/8 - 1/11 + 1/11 - 1/14 + ... + 1/x - 1/x+3) = 101/1540
1/3 x (1/5 - 1/x+3) = 101/1540
1/5 - 1/x+3 = 101/1540 : 1/3
1/5 - 1/x+3 = 303/1540
1/x+3 = 1/5 - 303/1540
1/x+3 = 1/308
=> x+3=308
=> x=308-3=305
vậy x=305
1/5x8 + 1/8x11 + 1/11x14 + ... + 1/xx(x+3) = 101/1540
1/3 x (3/5x8 + 3/8x11 + 3/11x14 + ... + 3/xx(x+3) = 101/1540
1/3 x (1/5 - 1/8 + 1/8 - 1/11 + 1/11 - 1/14 + ... + 1/x - 1/x+3) = 101/1540
1/3 x (1/5 - 1/x+3) = 101/1540
1/5 - 1/x+3 = 101/1540 : 1/3
1/5 - 1/x+3 = 303/1540
1/x+3 = 1/5 - 303/1540
1/x+3 = 1/308
=> x+3=308
=> x=308-3=305
vậy x=305
\(\frac{3x}{2.5}+\frac{3x}{5.8}+\frac{3x}{8.11}+\frac{3x}{11.14}=\frac{1}{21}\)
\(\Leftrightarrow x\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}\right)=\frac{1}{21}\)
\(\Leftrightarrow x\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\right)=\frac{1}{21}\)
\(\Leftrightarrow x\left(\frac{1}{2}-\frac{1}{14}\right)=\frac{1}{21}\)
\(\Leftrightarrow\frac{3}{7}x=\frac{1}{21}\)
\(\Leftrightarrow x=\frac{1}{9}\)
A = \(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{29}-\frac{1}{32}=\frac{1}{2}-\frac{1}{32}=\frac{15}{32}\)
\(A=\frac{3}{2\times5}+\frac{3}{5\times8}+\frac{3}{8\times11}+...+\frac{3}{29\times32}\)
\(A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{29}-\frac{1}{32}\)
\(A=\frac{1}{2}-\frac{1}{32}=\frac{16}{32}-\frac{1}{32}\)
\(A=\frac{15}{32}\)
A = 3 / 8 x 11 + 3 / 11 x 14 + 3 / 14 x 17 + 3 / 17 x 10
A = 1 / 8 - 1 / 11 + 1 / 11 - 1 / 14 + 1 / 14 - 1 / 17 + 1 / 17 - 1 / 10
A = 1 / 8 - 1 / 10
A = 1 / 40
B = 6 / 13 x 19 + 6 / 19 x 25 + ... + 6 / 613 x 619
B = 1 / 13 - 1 / 19 + 1 / 19 - 1 / 25 + ... + 1 / 613 - 1 / 619
B = 1 / 13 - 1 / 619
B = 606 / 8047
k mk nha