K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

mik ko biết

6 tháng 10 2018

Câu đầu tiên: \(\sqrt{18-\sqrt{128}}=\sqrt{16-2\sqrt[]{16}\sqrt{2}+2}=\sqrt{\left(\sqrt{16}-\sqrt{2}\right)^2}=\sqrt{16}-\sqrt{2}=4-\sqrt{2}\)

6 tháng 10 2018

CM\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=2\)

Biến đổi vế trái ta có:

\(VT^2=\left(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\right)^2=4+\sqrt{7}-2\sqrt{\left(4+\sqrt{7}\right)\left(\sqrt{4-\sqrt{7}}\right)}+4-\sqrt{7}=8-2\sqrt{16-7}=8-2\sqrt{9}=8-2.3=2\Rightarrow VT=\sqrt{2}\)

27 tháng 6 2018

a) \(x^2-\sqrt{2}x+\sqrt{5}x-\sqrt{10}=0\)

\(\Leftrightarrow x\left(x-\sqrt{2}\right)+\sqrt{5}\left(x-\sqrt{2}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{2}=0\\x+\sqrt{5}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{5}\end{matrix}\right.\)

27 tháng 6 2017

đúng rồi bạn nhé

27 tháng 6 2017

Tacó \(\Delta\)=(-7)2-4x1x2=41>0 =>\(\sqrt{_{ }x1}\)=\(\dfrac{7+\sqrt{41}}{2}\)=>\(_{x1}\)=\(\dfrac{\left(7+\sqrt{41}\right)^2}{4}\)=\(\dfrac{45+7\sqrt{41}}{2}\) =>\(\sqrt{_{ }x2}\)=\(\dfrac{7-\sqrt{41}}{2}\)=>\(_{x_2}\)=\(\dfrac{\left(7-\sqrt{41^{ }}\right)^2}{4}\)=\(\dfrac{45-7\sqrt{41}}{2}\) so sánh với điều kiện X>_0

NV
14 tháng 4 2022

a. ĐKXĐ: \(x\ge0\)

Đặt \(\sqrt{x}=t\ge0\)

\(\Rightarrow t^2-6t+5=0\Rightarrow\left[{}\begin{matrix}t=1\\t=5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=25\end{matrix}\right.\)

b.

Đặt \(x^2=t\ge0\)

\(\Rightarrow-t^2+5t+6=0\Rightarrow\left[{}\begin{matrix}t=-1< 0\left(loại\right)\\t=6\end{matrix}\right.\)

\(\Rightarrow x^2=6\Rightarrow x=\pm6\)

c: \(\Leftrightarrow x-3=0\)

hay x=3

4 tháng 1 2022

c: ⇔x−3=0⇔x−3=0

hay x=3