K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2016

bạn giải luôn đi

để mk tham khảo

Bài này của lp 8

mà mk mới hok lp 7

=> mk xem bn làm để năm sau mk hok cách làm

Thực ra mình lập câu hỏi này để giải một bài toán mình từng hỏi cho mọi người tham khảo, thì có một bạn nhờ mình giải.Link : http://olm.vn/hoi-dap/question/715065.htmlThấy Online Math chọn thì không nỡ bỏ quên :vĐề :  Chia số \(2013^{2016}\) thành tổng các số tự nhiên.Tìm số dư của tổng lập phương các số tự nhiên đó cho 6.Bài này chủ yếu là đánh lừa các bạn, vì không rõ ràng ở phần "...
Đọc tiếp

Thực ra mình lập câu hỏi này để giải một bài toán mình từng hỏi cho mọi người tham khảo, thì có một bạn nhờ mình giải.

Link : http://olm.vn/hoi-dap/question/715065.html

Thấy Online Math chọn thì không nỡ bỏ quên :v

Đề :  Chia số \(2013^{2016}\) thành tổng các số tự nhiên.

Tìm số dư của tổng lập phương các số tự nhiên đó cho 6.

Bài này chủ yếu là đánh lừa các bạn, vì không rõ ràng ở phần " tổng các số tự nhiên", chúng ta chẳng biết tổng của các số nào cả, có rất nhiều cách chia như vậy. Với những bài có dạng như này, mẹo là các bạn đưa về dạng tổng quá, sẽ dễ dàng chứng minh được.

Cách giải :

Đặt \(2013^{2016}=a_1+a_2+...+a_n\)

Tổng lập phương các số tự nhiên này là :

\(a_1^3+a_2^3+...+a_n^3\)

Có :

\(a_1^3+a_2^3+...+a_n^3-\left(a_1+a_2+...+a_n\right)\)

\(=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)\)

\(=a_1\left(a_1^2-1\right)+a_2\left(a_2^2-1\right)+...+a_n\left(a_n^2-1\right)\)

\(=\left(a_1-1\right)a\left(a_1+1\right)+\left(a_2-1\right)a_2\left(a_2+1\right)+...+\left(a_n-1\right)a_n\left(a_n+1\right)\)

Thấy \(\left(a_1-1\right)a\left(a_1+1\right);\left(a_2-1\right)a_2\left(a_2+1\right);...;\left(a_n-1\right)a_n\left(a_n+1\right)\) là tích 3 số tự nhiên liên tiếp nên dễ dàng chứng minh nó chia hết cho 6.

Do đó \(a_1^3+a_2^3+...+a_n^3-\left(a_1+a_2+...+a_n\right)\) chia hết cho 6, tức \(a_1^3+a_2^3+...+a_n^3\) có cùng số dư với \(2013^{2016}\left(=a_1+a_2+...+a_n\right)\) khi chia cho 6.

Các bạn tự tìm số dư, vì phần còn lại khá đơn giản :)

0
3 tháng 7 2020

\(2015^{2015}=2014.2015^{2014}+2015^{2014}\)

Trên là 1 cách viết

G/s: 2015^2015 có thể viết thành tổng k số tự nhiên bất kì: n1 + n2 +...+nk 

Xét \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\) tích của 3 số tự nhiên liên tiếp vừa chia hết cho 2 và vừa chia hết cho 3 

mà ( 2; 3) = 1; 2.3 = 6 

Do đó: \(n^3-n\) chia hết cho 6 

Khi đó:

 \(n_1^3-n_1⋮6\)

\(n_2^3-n_2⋮6\)

\(n_3^3-n_3⋮6\)

....

\(n_k^3-n_k⋮6\)

=> \(\left(n_1^3-n_1\right)+\left(n_2^3-n_2\right)+...+\left(n_k^3-n_k\right)⋮6\)

=> \(\left(n_1^3+n_2^3+...+n_k^3\right)-\left(n_1+n_2+...+n_k\right)⋮6\)

=> \(\left(n_1^3+n_2^3+...+n_k^3\right);\left(n_1+n_2+...+n_k\right)\) có cùng số dư khi chia cho 6

Mặt khác: 

\(n_1+n_2+...+n_k=2015^{2015}\equiv\left(-1\right)^{2015}\equiv-1\equiv5\left(mod6\right)\)

=> 2015^2015 chia 6 dư 5

Hoặc có thể làm: 

\(n_1+n_2+...+n_k=2015^{2015}\)

vì 2015 chia 6 dư 5 ; 5^2 chia 6 dư 1 => 2015^2 chia 6 dư 1=> 2015^2014 chia 6 dư 1 => 2015^2015 chia 6 dư 5 

Vậy Tổng lập phương các số tự nhiên đó chia 6 dư 5

27 tháng 12 2016

đặt 20152016 = a1 + a2 + a3 + a4 + ... + a100

đặt    S = a13 + a23 + a33 + a43 + ... + a1003

     S - 20152016 = (a13 + a23 + a33 + a43 + ... + a1003) - (a1 + a2 + a3 + a4 + ... + a100)

                       = (a1- a1) + (a2- a2) + (a3- a3) + (a4- a4) + ... + (a1003 - a100)

ta thấy mỗi hiệu trên đều chia hết cho 6(vì mỗi hiệu đều là tích 3 số tự nhiên liên tiếp)

=> S - 20152016 chia hết cho 6

=> S và 20152016 chia 6 có cùng số dư

lại thấy 2015 chia 6 dư -1 => 20152016 chia 6 dư (-1)2016 hay 20152016 chia 6 dư 1

=> S chia 6 dư 1

vậy tổng các lập phương của mỗi số hạng của tổng 20152016 chia 6 dư 1

15 tháng 4 2019

Đặt \(1995^{1995}=a=a_1+a_2+a_3+...+a_n\)

Gọi \(S=a_1^3+a_2^3+a_3^3+.....+a_n^3\)

\(=a_1^3+a_2^3+a_3^3+.....+a_n^3-a+a\)

\(=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+\left(a_3^3-a_3\right)+......+\left(a_n^3-a_n\right)+a\)

\(=\left(a_1-1\right)\cdot a_1\cdot\left(a_1+1\right)+\left(a_2-1\right)\cdot a_2\cdot\left(a_2+1\right)+......+\left(a_n-1\right)\cdot a_n.\left(a_n+1\right)+a\)

Dễ thấy toàn bộ hạng tử đều chia hết cho 6 ngoại trừ a.

Do a là số lẻ chia hết cho 3 nên chia 6 dư 3.

Vậy nó chia 6 dư 3

3 tháng 7 2020

Vậy tổng của các số tự nhiên ở đâu ạ :VV

14 tháng 7 2015

Đặt 19951995 = a = a1 + a2 + …+ an.

Gọi  =____ =_____ + a - a

           = (a3 - a1) + (a3 - a2) + …+ (a3 - an) + a

Mỗi dấu ngoặc đều chia hết cho 6 vì mỗi dấu ngoặc là tích của ba số tự nhiên liên tiếp. Chỉ cần tìm số dư khi chia a cho 6

1995 là số lẻ chia hết cho 3, nên a củng là số lẻ chia hết cho 3, do đó chia cho 6 dư 3

Đúng không các pn, nhanh lên để chị mình đi học nha

25 tháng 6 2017

Đặt  \(P=1995^{1995}=a_1+a_2+a_3+...+a_n\)  (với a1, a2, ..., an là các số tự nhiên và n là số tự nhiên khác 0)

và  \(S=a_1^3+a_2^3+a_3^3+a_n^3\)

Xét hiệu  

\(S-P=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+\left(a_3^3-a_3\right)+...+\left(a_n^3-a_n\right)\)

\(=\left(a_1-1\right)a_1\left(a_1+1\right)+\left(a_2-1\right)a_2\left(a_2+1\right)+\left(a_3-1\right)a_3\left(a_3+1\right)+...+\left(a_n-1\right)a_n\left(a_n+1\right)\)

Ta thấy mỗi số hạng của tổng trên là tích của 3 số tự nhiên liên tiếp nên tồn tại một số chia hết cho 3 và một số chia hết cho 2

=> Mỗi số hạng đều chia hết cho 6

=> \(\left(S-P\right)⋮6\)

Do đó muốn tìm số dư của S khi chia cho 6, ta chỉ cần tìm số dư của P khi chia cho 6

Lại có  \(P=1995^{1995}=\left(1995^3\right)^{665}\)    đồng dư với  \(3^{665}\)  (mod 6)

Mà  \(3^k\)  (với k là số tự nhiên khác 0) luôn chia 6 dư 3 => \(3^{665}\)  chia 6 dư 3

=> P chia 6 dư 3

=> S chia 6 dư 3.

p/s: Học toán với OnlineMath - Online Math có thể thêm kí hiệu đồng dư được không ạ?

2 tháng 3 2021

Học liệu của ĐH Sư phạm Hà Nội