K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2015

 P^2 – 1 = (p+1)(p -1) Vì p là nguyên tố > 3 => p lẻ => P+1 và p -1 là 2 số chẵn liên tiếp nên (p + 1 ) (p – 1) 8 Mặt khác (p + 1 ), (p – 1) , p là 3 số tự nhiên liên tiếp nên chia hết cho 3 =>p +1 hoặc p – 1 chia hết cho 3 => (p + 1 ) (p – 1) 3 Mà (3,8) =1 => p^2 -1 chia hết cho 24

\(p^2-1=p^2+p-p-1=\left(p^2+p\right)-\left(p+1\right)=p\left(p+1\right)-\left(p+1\right)=\left(p-1\right).\left(p+1\right)\)

p là số nguyên tố >3 =>p là số lẻ =>p-1;p+1 là 2 số chẵn liên tiếp=>(p-1)(p+1) chia hết cho 8

p là số nguyên tố >3 =>p=3k+1;3k+2

với p=3k+1=>(p-1)(p+1)=(3k+1-1)(p+1)=3k(p+1) chia hết cho 3 (1)

với p=3k+2 =>(p-1)(p+1)=(p-1)(3k+2+1)=(p-1)(k+1)3 chia hết cho 3 (2)

từ (1);(2) =>\(p^2-1\)chia hết cho 3;8

mà (3;8)=1\(\Rightarrow p^2-1\)chia hết cho 24

=>đpcm

22 tháng 6 2017

Ta có:

p(p^2-1)=p(p+1)(p-1) chia hết cho 6 với mọi p dương (do trong 3 số có ít nhất 1 số chia hết cho 2, 1 số chia hết cho 3)

Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ

=> p+1 và p -1 đều chẵn

=> p(p-1)(p+1) chia hết cho 4

Vì p(p^2-1) chia hết cho 6 và 4 nên cũng chia hết cho 24

22 tháng 6 2017

\(p^2-1=p^2+p-P-1=\left(p^2+p\right)-p+1-\left(p+1\right)=\left(p-1.p+1\right)\)

P là số nguyên tố =>3= > p là số lẻ

số chẵn liên tiếp => (p-1)(p+1) chia hết cho 8

P là số nguyên tố >3=> P = 3k+1:3k+2 với số P=3 k + 1 => ( p + 1) = 3k (p+1)chia hết cho 3 (1)

với p =3k + 2 =>(p-1)(p+1)= (p-10(3k+2+1)= (p-1)(3k+1) cjia hết cho3(2)

từ (1):(2) = p2 -1 chia hết cho 3:8

mà (3:8)=1=>p2 - 1 chia hết cho 4

3 tháng 12 2017

Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2) 
= n^2 (n^4 – 1 + n^2 – 1) 
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1] 
= n^2 (n^2 – 1)(n^2 + 2) 
= n.n.(n – 1)(n + 1)(n^2 + 2) 
+ Nếu n chẳn ta có n = 2k (k thuộc N) 
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1) 
Suy ra A chia hết cho 8 
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N) 
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2) 
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) 
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 
Suy ra A chia hết cho 8 
Do đó A chia hết cho 8 với mọi n thuộc N 
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n thuộc N.

28 tháng 10 2018

Chép hả Lý

29 tháng 11 2015

p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2. 
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1) 
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2) 
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3) 
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1) 
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4) 
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5) 
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.

29 tháng 11 2015

Ta thấy : Tich của 3 số tự nhiên liên tiếp là 1 số chia hết cho 3

Vì p-1 ; p ; p+1 là 3 số tự nhiên Liên tiếp

=> Trong 3 số trên luôn có 1 số chia hết cho 3

=> (p-1)(p+1) chia hết cho 3.      (1)

Vì p là số nguyên tố >3 => p là số lẻ

=> p-1 và p+1 là 2 số chẵn Liên tiếp

Mà tích của 2 số chămn Liên tiếp luôn chia  hết cho 8

=> (p-1)(p+1) chia hết cho 8.       (2)

Mà (3,8)=1

Từ (1) và (2) => (p-1)(p+1) chia hết cho (3.8) 

=> (p-1)(p+1) chia hết cho 24 (đpcm)

5 tháng 12 2015

Vì p là số nguyên tố lớn hơn 3 nên p lẻ. Do đó, p = 2k + 1 (k nguyên và k > 1) suy ra:

A = (p – 1).(p + 1) = 2k(2k + 2) = 4k(k + 1) suy ra A chia hết cho 8.

kTa có: p = 3k + 1 hoặc 3k – 1 (h nguyên và k > 1) suy ra A chia hết cho 3.

Vậy A = (p – 1)(p + 1) chia hết cho 24

5 tháng 12 2015

http://olm.vn/hoi-dap/question/18848.html

Bạn vào đây tham khảo nhé !

14 tháng 4 2018

p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2. 
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1) 
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2) 
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3) 
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1) 
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4) 
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5) 
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.

10 tháng 6 2018

P=3+2^2(2+1)+2^4(2+1)+2^6(2+1)

=3(1+2^2+2^4+2^6)

=>đpcm

11 tháng 11 2020

a,Do p là số nguyên tố >3=>p2=3k+1 =>p2-1 chi hết cho 3

Tương tự, ta được q2-1 chia hết cho 3

Suy ra: p2-q2 chia hết cho 3(1)

Do p là số nguyên tố lớn hơn 3 nên p-1 và p+1 là 2 số chẵn liên tiếp=>(p-1)(p+1) chia hết cho 8<=>p2-1 chia hết cho 8

Do q là số nguyên tố lớn hơn 3 nên q-1 và q+1 là 2 số chẵn liên tiếp=>(q-1)(q+1) chia hết cho 8<=>q2-1 chia hết cho 8

Suy ra :p2-qchia hết cho 8(2)

Từ (1) và (2) suy ra p^2-q^2 chia hết cho BCNN(8;3)<=> p^2-q^2 chia hết cho 24

7 tháng 4 2017

Vì p là số nguyên tố lớn hơn 3.

=>p lẻ.

=>p-1 và p+1 chẵn.

=>p-1 và p+1 là 2 số chẵn liên tiếp.

=>có 1 số chia hết cho 2 và 1 số chia hết cho 4.

=>tích chia hết cho 2*4=8.

Mà p là snt >3.

=>(p;3)=1.

=>p-1 chia hết cho 3 hoặc p+1 chuia hết cho 3.

=>(p-1)*(p+1) chia hết cho 3.

Mà (3;8)=1.

=>(p-1)*(p+1) chia hết cho 3*8=24.(đpcm)

29 tháng 12 2017

p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2. 
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1) 
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2) 
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3) 
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1) 
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4) 
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5) 
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24 (Đpcm)

 
 
14 tháng 9 2023

mình chỉ biết bài 4 thôi
Bài 4: Vì tổng bằng 1012 nên trong 3 số nguyên tố đó thì phải có 1 số nguyên tố là số chẵn. Nên số chẵn đó là 2 đồng thời là số nhỏ nhất. Vậy số 2 là số nguyên tố nhỏ nhất trong 3 số nguyên tố đó