Chờ a, b, c là độ dài của 1 tam giác. Tính giá trị biểu thức
P=\(\frac{\left(a^2-\left(b+c\right)^2\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(\left(a-c\right)^2-b^2\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\hept{\begin{cases}a-b=x\\b-c=y\\c-a=z\end{cases}}\)
\(A=\frac{2}{x}+\frac{2}{y}+\frac{2}{z}+\frac{x^2y^2z^2}{xyz}\)
\(A=\frac{\left(2y+2x\right).z+2xy}{xyz}+\frac{x^2+y^2+x^2}{xyz}\)
\(A=\frac{2yz+2xz+2xy}{xyz}+\frac{x^2+y^2+z^2}{xyz}\)
\(A=\frac{2yz+2xz+2xy+x^2+y^2+z^2}{xyz}=\frac{\left(x+y+z\right)^2}{xyz}\)
Có đúng k nhỉ k chắc
a) Ta có : \(a^2+1=a^2+ab+bc+ac=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)
Tương tự : \(b^2+1=\left(b+a\right)\left(b+c\right)\) ; \(c^2+1=\left(c+a\right)\left(c+b\right)\)
Suy ra \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)
Vậy \(A=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}=1\)
b) Ta có ; \(a^2+2bc-1=a^2+2bc-\left(ab+bc+ac\right)=a^2-ab+bc-ac=a\left(a-b\right)-c\left(a-b\right)\)
\(=\left(a-b\right)\left(a-c\right)\)
Tương tự : \(b^2+2ac-1=\left(a-b\right)\left(c-b\right)\) ; \(c^2+2ab-1=\left(a-c\right)\left(b-c\right)\)
Suy ra \(\left(a^2+2bc-1\right)\left(b^2+2ac-1\right)\left(c^2+2ab-1\right)=\left(a-b\right)^2.\left(c-a\right)^2.\left[-\left(b-c\right)^2\right]\)
Vậy : \(B=\frac{-\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)}=-1\)
Tìm x nguyên thỏa mãn$x^2\left(x^2-1\right)\left(x^2-5\right)\left(x^2-10\right)<0$x2(x2−1)(x2−5)(x2−10)<0và $\left|x\right|<5$|x|<5Bài này của lớp 6 nhưng lập bảng xét dấu
xin lỗi em mới học lớp 5
nên ko làm đựơc
nếu ai cũng vậy thì k cho nhé
Xuất hiện một "phần tử x" không có điều kiện. Có lẽ đề sai.