K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2016

Điều kiện \(1\le x\le4\)

Đặt \(\hept{\begin{cases}\sqrt{x-1}=a\\\sqrt{4-x}=b\end{cases}}\)

Ta có \(\hept{\begin{cases}a+b+ab=5\\a^2+b^2=3\end{cases}}\)

=> PT vô nghiệm

a) ĐKXĐ: \(x\ge0\)

Ta có: \(\left(x+3\sqrt{x}+2\right)\left(x+9\sqrt{x}+18\right)=168x\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+6\right)=168x\)

\(\Leftrightarrow\left(x+6\right)^2+12\sqrt{x}\left(x+6\right)-133=0\)

\(\Leftrightarrow\left(x+6\right)^2+19\sqrt{x}\left(x+6\right)-7\sqrt{x}\left(x+6\right)-133=0\)

\(\Leftrightarrow\left(x+6\right)\left(x+19\sqrt{x}+6\right)-7\sqrt{x}\left(x+19\sqrt{x}+6\right)=0\)

\(\Leftrightarrow\left(x-7\sqrt{x}+6\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=36\end{matrix}\right.\)

30 tháng 7 2021

Dòng thứ 2 qua dòng thứ 3 anh làm chậm lại được không ạ, tại tắt quá e không hiểu

24 tháng 2 2019

Đây là toán 9 chứ

a) Ta có: \(\left(x-\sqrt{2}\right)+3\left(x^2-2\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right)+3\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(1+3x+3\sqrt{2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{2}=0\\3x+3\sqrt{2}+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\3x=-3\sqrt{2}-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=\dfrac{-3\sqrt{2}-1}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{\sqrt{2};\dfrac{-3\sqrt{2}-1}{3}\right\}\)

b) Ta có: \(x^2-5=\left(2x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)

\(\Leftrightarrow\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)-\left(2x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=0\)

\(\Leftrightarrow\left(x+\sqrt{5}\right)\left(x-\sqrt{5}-2x+\sqrt{5}\right)=0\)

\(\Leftrightarrow-x\left(x+\sqrt{5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\x+\sqrt{5}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\sqrt{5}\end{matrix}\right.\)

Vậy: \(S=\left\{0;-\sqrt{5}\right\}\)

26 tháng 10 2021

có làm thì mới có ăn, không làm mà đòi có ăn chịu khó ăn ***, ăn đầu ****

19 tháng 9 2016

Đặt \(\hept{\begin{cases}\sqrt{x+1}=a\\\sqrt{4-x}=b\end{cases}}\)

PT <=> a + b + ab = 5 và a2 + b2 = 5

Tới đây thì đơn giản rồi