tìm Nghiệm của đa thức một biến
a(x)=5x-1
B(x)=x^2-25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: f(1)=0
=>a+b+c=0(luôn đúng)
b: f(x)=0
=>5x^2-6x+1=0
=>(x-1)(5x-1)=0
=>x=1/5 hoặc x=1
a) \(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)
\(=2\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-3\left[\left(x+y\right)^2-2xy\right]\)
\(=2\left(1-3xy\right)-3\left(1-2xy\right)\)
\(=2-6xy-3+6xy=-1\)
\(\Rightarrow\) Giá trị của biểu thức không phụ thuộc vào biến \(x,y\)
b) \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)
\(=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)
\(=\dfrac{2x^2+50}{x^2+25}=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\)
\(\Rightarrow\) Giá trị của biểu thức không phụ thuộc vào biến \(x\)
Ta có f(x)=ax^2+5x-6 (1)
Thay x=-2 vào (1) ta đc
f(-2)=a(-2)^2+5(-2)-6
= 4a-10-6
=4a-16
Mà x=-2 là 1 nghiệm của f(x)
suy ra 4a-16=0
4a=16
a=4
Vậy a=4
a: P(1)=2-3-4=-5
b: \(P\left(x\right)+Q\left(x\right)=3x^2-6x+1\)
\(P\left(x\right)-Q\left(x\right)=x^2-9\)
c: Đặt H(x)=0
=>(x-3)(x+3)=0
=>x=3 hoặc x=-3
a) \(f\left(x\right)=x^2+7x-8=0\)
\(\Leftrightarrow f\left(x\right)=x^2-x+8x-8=0\)
\(\Leftrightarrow f\left(x\right)=\left(x^2-x\right)+\left(8x-8\right)=0\)
\(\Leftrightarrow f\left(x\right)=x\left(x-1\right)+8\left(x-1\right)=0\)
\(\Leftrightarrow f\left(x\right)=\left(x-1\right)\left(x+8\right)=0\)
\(\Rightarrow x-1=0\) hoặc \(x+8=0\)
Nếu \(x-1=0\Rightarrow x=1\)
Nếu \(x+8=0\Rightarrow x=-8\)
Vậy đa thức f(x) có nghiệm là 1 và -8
b) \(k\left(x\right)=5x^2+9x+4=0\)
\(\Leftrightarrow k\left(x\right)=5x^2+5x+4x+4=0\)
\(\Leftrightarrow k\left(x\right)=\left(5x^2+5x\right)+\left(4x+4\right)=0\)
\(\Leftrightarrow k\left(x\right)=5x\left(x+1\right)+4\left(x+1\right)=0\)
\(\Leftrightarrow k\left(x\right)=\left(x+1\right)\left(5x+4\right)=0\)
\(\Rightarrow x+1=0\) hoặc \(5x+4=0\)
Nếu \(x+1=0\Rightarrow x=-1\)
Nếu \(5x+4=0\Rightarrow x=-\frac{4}{5}\)
Vậy đa thức k(x) có nghiệm là -1 và -4/5
Các đa thức 1 biến là : A, B, M, N là những đa thức một biến.
Cho a(x) = 0
5x - 1 = 0
5x = 0 + 1 = 1
x = 5 : 1 = 5
=> đa thức a(x) có nghiệm là 5
Cho b(x) = 0
\(x^2-25=0\)
\(x^2=0+25=25\)
\(x^2=5^2=>x=5\)
=> đa thức b(x) có nghiện là 5
Vậy hai đa thức trên có chung một nghiệm