K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2022

(y - 5):8+32=40

(y - 5):8      =40-32

(y - 5):8      =  8

(y - 5)         =8x8 

y - 5           = 64

y                = 64+5

y                =     69

18 tháng 3 2023

Để giải bài toán này, ta sẽ sử dụng phương pháp đơn giản là giải hệ phương trình tuyến tính với hai ẩn x và y.

Bước 1: Tính x hoặc y từ phương trình x/-5=y/4

Ta thấy rằng x chia -5 và y chia 4 có kết quả bằng nhau, vậy ta có thể dùng công thức: x = -5 * (y/4) x = -5y/4
Bước 2: Thay x vào phương trình x+y=-8 để tính giá trị y

Ta có: x + y = -8 Thay x = -5y/4 vào phương trình trên ta được: -5y/4 + y = -8 -5y + 4y = -32 y = 8
Bước 3: Tính giá trị của x bằng cách thay y = 8 vào phương trình x = -5y/4

Ta có: x = -5 * (8/4) x = -10
Vậy hai số x và y thỏa mãn điều kiện đó là: x = -10 và y = 8.

18 tháng 3 2023

áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{-5}=\dfrac{y}{4}=\dfrac{x+y}{\left(-5\right)+4}=-\dfrac{8}{-1}=-8\)

=> x/-5 = -8 . (-5) = 40

y/4 = -8 . 4 = -32

vậy x = 40 ; y = -32

24 tháng 7 2019

1.A.0.96

24 tháng 7 2019

Câu a tự làm nhé

b, \(\frac{2x+3}{24}=\frac{3x-1}{32}\)

\(\Leftrightarrow32(2x+3)=24(3x-1)\)

\(\Leftrightarrow64x+96=72x-24\)

\(\Leftrightarrow64x+96-72x=-24\)

\(\Leftrightarrow96-8x=-24\Leftrightarrow x=15\)

13 tháng 4 2019

Rút gọn từng phân số rồi sắp xếp lại như sau :

\(A=\left(40+\frac{3}{8}+\frac{5}{8^3}\right)+\left(\frac{7}{8^2}+\frac{4}{8^4}\right)\)

\(B=\left(40+\frac{3}{8}+\frac{5}{8^3}\right)+\left(\frac{5}{8^2}+\frac{5}{8^4}\right)\)

Rõ ràng để so sánh A với B chỉ cần so sánh \(\frac{7}{8^2}+\frac{4}{8^4}\) với \(\frac{5}{8^2}+\frac{5}{8^4}\) .

Ta có :

\(\frac{7}{8^2}+\frac{4}{8^4}=\left(\frac{5}{8^2}+\frac{4}{8^4}\right)+\frac{2}{8^2}\)

còn \(\frac{5}{8^2}+\frac{5}{8^4}=\left(\frac{5}{8^2}+\frac{4}{8^4}\right)+\frac{1}{8^4}\)

Do \(\frac{2}{8^2}>\frac{1}{8^4}\) nên \(\frac{7}{8^2}+\frac{4}{8^4}>\frac{5}{8^2}+\frac{5}{8^4}\) . Từ đó suy ra A > B.

8 tháng 6 2016

Từ đầu bài ta có: y x 4 + y x 6 - y x 2 = 120

                                   y x (4 + 6 - 2) = 120

                                                y x 8 = 120

                                                     y = 120 : 8

                                              Vậy y = 15

8 tháng 6 2016

y : 8 × 32 + y : 3 × 18 - y : 5 × 10 = 120

y × 4 + y × 6 - y × 2 = 120

y × ( 4 + 6 - 2) = 120

y × 8 = 120

y = 120 : 8

y = 15

Vậy y = 15

12 tháng 4 2020

Ta có : \(x=5x',y=5y'\)trong đó a' và b' là hai số nguyên tố cùng nhau

\(x+y=12\Rightarrow5\left(x'+y'\right)=12\Rightarrow x'+y'=12:5=2,4\)

Giả sử \(x'\ge y'\)thì x' = 2,3,y' = 1 hoặc x' = -2,6 , y = 5 => x = \(5\cdot2,3=11,5\)

Không thỏa mãn điều kiện vì 12 không chia hết cho 5

Ta có : \(x=8x',y=8y'\)(như trên)

Có \(x+y=32\Rightarrow8\left(x'+y'\right)=32\Rightarrow x'+y'=4\)

Giả sử \(x'\ge y'\)thì x' = 3 , y' = 1 hoặc x' = 1,y' = 3 => \(x=8\cdot3=24,y=8\cdot1=8\)hoặc \(x=8\cdot1=8,y=8\cdot3=24\)

Vậy \(\left(x,y\right)\in\left\{\left(24,8\right);\left(8,24\right)\right\}\)

11 tháng 8 2021

á đù được của ló đấy

8 tháng 11 2023

y = (32 - 8) : 2 = 12

z = 32 - 12 = 20

15 tháng 3 2023

a) Ta có hệ phương trình:

x/8 = y/12
x + y = 60 Giải bằng cách thay x/8 bằng y/12 trong phương trình thứ hai, ta có:
(y/12)*8 + y = 60
2y + y = 60
y = 20 Thay y = 20 vào x + y = 60, ta có x = 40. Vậy kết quả là x = 40, y = 20.
b) Ta có hệ phương trình:

x/3 = y/6
x*y = 162 Thay x/3 bằng y/6 trong phương trình thứ hai, ta có:
y^2 = 324
y = 18 Thay y = 18 vào x/3 = y/6, ta có x = 9. Vậy kết quả là x = 9, y = 18.
c) Ta có hệ phương trình:

x/y = 2/5
xy = 40 Từ phương trình thứ nhất, ta có x = 2y/5. Thay vào xy = 40, ta có:
(2y/5)*y = 40
y^2 = 100
y = 10 Thay y = 10 vào x = 2y/5, ta có x = 4. Vậy kết quả là x = 4, y = 10.
d) Ta có hệ phương trình:

x/7 = y/6
y/8 = z/5
x + y - z = 37 Thay x/7 bằng y/6 trong phương trình thứ ba, ta có x = (7/6)*y - z. Thay y/8 bằng z/5 trong phương trình thứ ba, ta có y = (8/5)*z. Thay x và y vào phương trình thứ ba, ta được:
(7/6)*y - z + y - z = 37
(19/6)*y - 2z = 37 Thay y = (8/5)*z vào phương trình trên, ta có:
(19/6)*(8/5)*z - 2z = 37
z = 30 Thay z = 30 vào y = (8/5)*z, ta có y = 48. Thay y và z vào x/7 = y/6, ta có x = 35. Vậy kết quả là x = 35, y = 48, z = 30.
e) Ta có hệ phương trình:

10x = 15y = 21z
3x - 5z + 7y = 37 Từ phương trình thứ nhất, ta có:
x = 3z/7
y = 3z/5 Thay x và y vào phương trình thứ hai, ta có:
3z/73 - 5z + 73z/5 = 37
3z - 5z + 12z - 245 = 0
10z = 245
z = 24.5 Thay z = 24.5 vào x = 3z/7 và y = 3z/5, ta có x = 10.5 và y = 14.7. Tuy nhiên, kết quả này không phải là một cặp số nguyên. Vậy hệ phương trình không có nghiệm thỏa mãn.