Cho A= 4a^2b^2 - ( a^2 + b^2 -c^2 ). Trong đó a,b,c là độ dài 3 cạnh của 1 tam giác. Chứng minh A > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)
\(=\left[c^2-\left(a-b\right)^2\right]\left[c^2+\left(a+b\right)^2\right]\)
\(=\left(c-a+b\right)\left(c-b+a\right)\left[c^2+\left(a+b\right)^2\right]>0\)
(vì theo bất đẳng thức tam giác thì \(b+c-a>0,a+c-b>0\))
A=(2ab-a^2-b^2+c^2).(2ab+a^2+b^2-c^2)
A=(c^2-(a-b)^2).((a+b)^2-c^2)
A=(c-a+b)(c+a-b)(a+b-c)(a+b+c)
Do c+b-a>0
c+a-b>0
a+b-c>0
a+b+c>0
=>A>0
Lời giải:
\(A=(2ab)^2-(a^2+b^2-c^2)^2=[2ab+(a^2+b^2-c^2)][2ab-(a^2+b^2-c^2)]\)
\(=[(a+b)^2-c^2][c^2-(a-b)^2]=(a+b-c)(a+b+c)(c-a+b)(c+a-b)\)
\(=(a+b+c)(a+b-c)(b+c-a)(c+a-b)>0\) theo BĐT tam giác
Do đó ta có đpcm.
\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
\(=4a^2b^2-\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)\)
\(=4a^2b^2-a^4-b^4-c^4-2a^2b^2+2b^2c^2+2c^2a^2\)
\(=2a^2b^2-a^4-b^4-c^4+2b^2c^2+2c^2a^2\)
\(=-a^4+2a^2b^2-b^4-c^4+2b^2c^2+2c^2a^2\)
\(=-\left(a^2-b^2\right)^2-c^2\left(c^2-2b^2-2a^2\right)>0\)
Vậy A > 0
Sửa đề: cm A<0
\(A=\left(a^2-b^2+c^2\right)^2-4a^2c^2\)
\(=\left(a^2-b^2+c^2\right)^2-\left(2ac\right)^2\)
\(=\left(a^2-b^2+c^2+2ac\right)\left(a^2-b^2+c^2-2ac\right)\)
\(=\left[\left(a+c\right)^2-b^2\right]\left[\left(a-c\right)^2-b^2\right]\)
\(=\left(a+c-b\right)\left(a+c+b\right)\left(a-c-b\right)\left(a-c+b\right)\)
Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên: a+b+c > 0
a+c>b => a+c-b > 0
c+b>a=>a-(c+b)=a-c-b < 0
a+b>c => a+b-c > 0
Do đó: (a+c-b)(a+b+c)(a-c-b)(a-c+b) < 0 hay A<0 (đpcm)
\(\left(a^2+b^2-c^2\right)^2-4a^2b^2\\ =\left(a^2+b^2-c^2+2ab\right)\left(a^2+b^2-c^2-2ab\right)\\ =\left[\left(a+b\right)^2-c^2\right]\left[\left(a-b\right)^2-c^2\right]\\ =-\left(a+b+c\right)\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)
Tổng 2 cạnh tam giác > cạnh thứ 3 nên cả 4 thừa số trên đều dương.
=> đpcm
Từ giả thiết suy ra
(a-b)^2+(b-c)^2+(a-c)^2=0 (nhân bung cái này sẽ ra cái giả thiết ban đầu).
Từ đó suy ra: a=b, b=c và c=a. (Do tổng của 3 bình phương mà lại bằng 0 tức là các bình phương đó đều phải bằng 0). Suy ra tam giác đó đều
P/s: Tham khảo nhé
\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)
\(=\left[c^2-\left(a-b\right)^2\right]\left[\left(a+b\right)^2-c^2\right]\)
\(=\left(c-a+b\right)\left(c+a-b\right)\left(a+b+c\right)\left(a+b-c\right)\)
Do a;b;c là độ dài 3 cạnh tam giác nên \(c>a-b;c>b-a;a+b+c>0;a+b>c\)
\(\Rightarrow c-a+b>0;c+a-b>0;a+b+c>0;a+b-c>0\)
Nên \(\left(c-a+b\right)\left(c+a-b\right)\left(a+b+c\right)\left(a+b-c\right)>0\)
Hay \(A>0\)(đpcm)
A=(2ab-a^2-b^2+c^2).(2ab+a^2+b^2-c^2)
A=(c^2-(a-b)^2).((a+b)^2-c^2)
A=(c-a+b)(c+a-b)(a+b-c)(a+b+c)
Do c+b-a>0
c+a-b>0
a+b-c>0
a+b+c>0
=>A>0
@Hà Nhung Huyền Trang