K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2020

x^4 + 4x^3+ 6x^2+ 4x = y^2

Hướng dẫn: Ta có: x^4 + 4x^3+ 6x^2+ 4x = y^2 

⇔ x^4 +4x^3+6x^2+4x +1- y^2=1

⇔ (x+1)^4 – y^2 = 1

⇔ [(x+1)^2 –y] [(x+1)^2+y]= 1

\(\Leftrightarrow\) \(\hept{\begin{cases}\left(x+1\right)^2-y=1\\\left(x+1\right)^2+y=1\end{cases}}\) hoặc \(\hept{\begin{cases}\left(x+1\right)^2-y=-1\\\left(x+1\right)^2+y=-1\end{cases}}\)

\(\orbr{\begin{cases}1-y=1+y\\-1-y=-1+y\end{cases}}\)

⇒ y = 0 ⇒ (x+1)^2 = 1

⇔ x+1 = ±1 ⇒ x = 0 hoặc x = -2

Vậy ( x, y ) = ( 0, 0 ); ( – 2, 0 )

Chúc bạn hk tốt!!!

 

17 tháng 7 2016

Bài này dùng phương pháp kẹp là xong, lười làm bài hả?

17 tháng 7 2016

dùng kệp không ra, thử mà xem

NV
8 tháng 1 2024

\(\Leftrightarrow x^4-4x^3+12x^2-32x+32=\left(y-5\right)^2\)

\(\Leftrightarrow\left(x-2\right)^2\left(x^2+8\right)=\left(y-5\right)^2\)

- Với \(x=2\Rightarrow y=5\)

- Với \(x\ne2\Rightarrow x-2\) là ước của \(y-5\) 

Đặt \(y-5=n\left(x-2\right)\)

\(\Rightarrow\left(x-2\right)^2\left(x^2+8\right)=n^2\left(x-2\right)^2\)

\(\Rightarrow x^2+8=n^2\)

\(\Rightarrow\left(n-x\right)\left(n+x\right)=8\)

\(\Rightarrow\left[{}\begin{matrix}x=1;n=-3\Rightarrow y=8\\x=-1;n=-3\Rightarrow y=14\\x=1;n=3\Rightarrow y=2\\x=-1;n=3\Rightarrow y=-4\end{matrix}\right.\) 

27 tháng 2 2021
Vlsxw ws wz2xwxw w