giải phương trình nghiệm nguyên x^3 + 4x^2 + 6x + 4 = y^2
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
RM
0
JG
0
RM
0
JG
3
NW
1
NV
Nguyễn Việt Lâm
Giáo viên
8 tháng 1 2024
\(\Leftrightarrow x^4-4x^3+12x^2-32x+32=\left(y-5\right)^2\)
\(\Leftrightarrow\left(x-2\right)^2\left(x^2+8\right)=\left(y-5\right)^2\)
- Với \(x=2\Rightarrow y=5\)
- Với \(x\ne2\Rightarrow x-2\) là ước của \(y-5\)
Đặt \(y-5=n\left(x-2\right)\)
\(\Rightarrow\left(x-2\right)^2\left(x^2+8\right)=n^2\left(x-2\right)^2\)
\(\Rightarrow x^2+8=n^2\)
\(\Rightarrow\left(n-x\right)\left(n+x\right)=8\)
\(\Rightarrow\left[{}\begin{matrix}x=1;n=-3\Rightarrow y=8\\x=-1;n=-3\Rightarrow y=14\\x=1;n=3\Rightarrow y=2\\x=-1;n=3\Rightarrow y=-4\end{matrix}\right.\)
LV
1
x^4 + 4x^3+ 6x^2+ 4x = y^2
Hướng dẫn: Ta có: x^4 + 4x^3+ 6x^2+ 4x = y^2
⇔ x^4 +4x^3+6x^2+4x +1- y^2=1
⇔ (x+1)^4 – y^2 = 1
⇔ [(x+1)^2 –y] [(x+1)^2+y]= 1
\(\Leftrightarrow\) \(\hept{\begin{cases}\left(x+1\right)^2-y=1\\\left(x+1\right)^2+y=1\end{cases}}\) hoặc \(\hept{\begin{cases}\left(x+1\right)^2-y=-1\\\left(x+1\right)^2+y=-1\end{cases}}\)
\(\orbr{\begin{cases}1-y=1+y\\-1-y=-1+y\end{cases}}\)
⇒ y = 0 ⇒ (x+1)^2 = 1
⇔ x+1 = ±1 ⇒ x = 0 hoặc x = -2
Vậy ( x, y ) = ( 0, 0 ); ( – 2, 0 )
Chúc bạn hk tốt!!!